All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Двуслойные интервальные взвешенные графы в оценке рыночных рисков
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 159-166Данная работа посвящена применению двуслойных интервальных взвешенных графов в прогнозировании нестационарных временных рядов и оценке по полученным прогнозам рыночных рисков. Первый слой графа с интервальными вершинами, формируемый во время первичного обучения системы, отображает все возможные флуктуации системы в отрезке времени, в котором обучали систему. Интервальные вершины второго слоя графа (надстройка над графом первого слоя), отображающие степень ошибки моделируемых значений временного ряда, соединены ребрами с вершинами графа первого слоя. Предложенная модель апробирована на получении 90-дневного прогноза цен на стальные биллеты. Средняя ошибка прогноза составила 2,6 %, что меньше средней ошибки авторегрессионных прогнозов.
Ключевые слова: рыночные риски, прогнозирование, нестационарные временные ряды, двуслойные интервальные взвешенные графы.
Double layer interval weighted graphs in assessing the market risks
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 159-166Views (last year): 2. Citations: 1 (RSCI).This scientific work is dedicated to applying of two-layer interval weighted graphs in nonstationary time series forecasting and evaluation of market risks. The first layer of the graph, formed with the primary system training, displays potential system fluctuations at the time of system training. Interval vertexes of the second layer of the graph (the superstructure of the first layer) which display the degree of time series modeling error are connected with the first layer by edges. The proposed model has been approved by the 90-day forecast of steel billets. The average forecast error amounts 2,6 % (it’s less than the average forecast error of the autoregression models).
-
Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.
Ключевые слова: кредитная задолженность, процентная ставка, динамическое моделирование, модель в пространстве состояний, прогнозирование.
Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.
-
Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.
Statistically fair price for the European call options according to the discreet mean/variance model
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874Views (last year): 1.We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"