All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 2.
- Views (last year): 18.
-
Секционная модель несвободного роста дерева
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 307-322Представлена трехмерная секционная модель динамики биомассы дерева, растущего на ограниченной территории. Структура трехмерного дерева состоит из секций, периодически возникающих на макушке дерева и одновременно дающих начало виртуальным «деревьям», последовательно вложенным в своих предшественников. Зеленая биомасса секций есть разность смежных виртуальных деревьев. Секции имеют динамику, отличную от динамики самого дерева, и их биомасса со временем постепенно отмирает (в том числе и в условиях свободного роста дерева), что объясняет оголение ствола снизу. В 3D-модели динамики биомассы несвободно растущего дерева для описания динамики биомассы секций и составляющих их секторов используются уравнения, аналогичные предложенным для 2D-модели дерева. Представлены примеры динамики биомассы секторов, секций и дерева. Динамика годографов азимутального распределения биомассы секции демонстрирует, что нижние секции дерева, растущего на ограниченной территории, находятся в угнетении и отмирают (более быстро по сравнению с моделью свободно растущего дерева), а на макушке дерева появляются и растут свободно новые секции. В результате вверх по стволу двигается волна биомассы дерева.
Ключевые слова: двумерная модель, динамика биомассы, несвободно растущее дерево, секционная модель, конкуренция в сообществе.
Sectional model of non-free tree growth
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 307-322Views (last year): 1. Citations: 1 (RSCI).The three-dimensional model of biomass dynamics of a tree growing on a limited territory presented. The tree consists of structural sections periodically arising on its top. Each section generates a virtual "tree". Adjacent virtual trees are nested each other and their difference is the section. Sections have biomass dynamics which differs from the dynamics of the tree and gradually die off (including in course of the free growth of the tree), giving effect denudation of trunk from bottom. This is observed in nature. The 3D-model of biomass dynamics of a tree, growing in a limited area, for describing the biomass dynamics of sections and their constituent sectors uses equations similar to those proposed earlier for the 2D-tree model. Examples of biomass dynamics of sectors, sections and tree obtained using the developed model are presented. The dynamics of the hodographs of the azimuthal biomass distribution of sections demonstrates that the lower sections of a tree growing in a limited area, are in oppression and die (more quickly compared with the model of freely growing tree), and new sections on top of the tree appear and grow freely. As a result, "wave" of tree biomass runs up the trunk.
-
Прогнозирование розничной торговли на высокочастотных обезличенных данных
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.
Ключевые слова: фискальные данные, обезличенные высокочастотные данные, оператор фискальных данных, пространственная регрессия на панельных данных.
Retail forecasting on high-frequency depersonalized data
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"