All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.
Ключевые слова: жесткопластические среды, внешние нагрузки, материалы с памятью формы, вариационные принципы, пластичность при различных температурах, законытер модинамики, обобщенные решения.
Deformation of shape memory rigid-plastic bodies under variable external loads and temperatures
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 63-77Under increasing loading and at a constant temperature shape memory solids become deformed in an ideal elastic plastic way as other metals, and the maximum elastic strains are much less than the ultimate plastic ones. The shape is restored at the elevated temperature and low stress level. Phenomenologically, the «reverse» deformation is equivalent to the change in shape under active loading up to sign. Plastic deformation plays a leading role in a non-elastic process; thus, the mechanical behavior should be analyzed within the ideal rigid-plastic model with two loading surfaces. In this model two physical states of the material correspond to the loading surfaces: plastic flow under high stresses and melting at a relatively low temperature. The second section poses a problem of deformation of rigid-plastic bodies at the constant temperature in two forms: as a principle of virtual velocities with the von Mises yield condition and as a requirement of the minimum dissipative functionаl. The equivalence of the accepted definitions and the existence of the generalized solutions is proved for both principles. The third section studies the rigid-plastic model of the solid at the variable temperature with two loading surfaces. For the assumed model two optimal principles are defined that link the external loads and the displacement velocities of the solid points both under active loading and in the process of shape restoration under heating. The existence of generalized velocities is proved for the wide variety of 3D domains. The connection between the variational principles and the variable temperature is ensured by inclusion of the first and second principles of thermodynamics in the calculation model. It is essential that only the phenomenological description of the phenomenon is used in the proving process. The austenite-tomartensite transformations of alloys, which are often the key elements in explanations of the mechanical behavior of shape memory materials, are not used here. The fourth section includes the definition of the shape memory materials as solids with two loading surfaces and proves the existence of solutions within the accepted restrictions. The adequacy of the model and the experiments on deformation of shape memory materials is demonstrated. In the conclusion mathematical problems that could be interesting for future research are defined.
-
Двумерное макроскопическое и микроскопическое моделирование процессов взаимодействия воды и пористых материалов
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 77-86В различных областях науки, техники, защиты окружающей среды, в строительстве актуальными являются вопросы изучения процессов взаимодействия пористых материалов с веществами, находящимися в различных агрегатных состояниях. Особенно актуальными с точки зрения экологии и защиты окружающей среды являются исследования процессов взаимодействия пористых материалов с водой в жидкой и газообразной фазе. Поскольку в одном моле воды содержится 6.022140857 · 1023 молекул H2O, для описания свойств, например, водяного пара в поре в основном используются макроскопические подходы, рассматривающие водяной пар как сплошную среду в рамках аэродинамики. В данной работе построена и использовалась для моделирования макроскопическая двумерная диффузионная модель [Bitsadze, Kalinichenko, 1980] поведения водяного пара внутри изолированной поры. Наряду с макроскопической моделью в работе предложена микроскопическая модель поведения водяного пара внутри изолированной поры, построенная в рамках молекулярно-динамического подхода [Gould et al., 2005]. В данной модели на основе классической механики Ньютона описывается движение каждой молекулы воды, взаимодействующей как с другими молекулами воды, так и со стенками поры. Рассматривается эволюция системы «водяной пар – пора» с течением времени. В зависимости от внешних по отношению к поре условий система эволюционирует к различным состояниям равновесия, которые характеризуются различными значениями макроскопических характеристик, таких как температура, плотность, давление. Сравнение результатов молекулярно-динамического моделирования с результатами вычислений на основе макроскопической диффузионной модели и экспериментальными данными позволяет сделать вывод о необходимости сочетания макроскопического и микроскопического подхода для адекватного и более точного описания процессов взаимодействия водяного пара с пористыми материалами.
2D microscopic and macroscopic simulation of water and porous material interaction
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86Views (last year): 10.In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.
-
Вариационный принцип для сплошных сред, обладающих памятью формы, при изменяющихся внешних силах и температуре
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 541-555В рамках феноменологической механики сплошной среды без анализа микрофизики явления рассматривается квазистатическая задача деформирования сплавов с памятью формы. Феноменологический подход основан на сопоставлении двух диаграмм деформирования материалов. Первая диаграмма отвечает активному пропорциональному нагружению, когда сплав ведет себя как идеальный упругопластический материал; после снятия нагрузки фиксируется остаточная деформация. Вторая диаграмма наблюдается, если деформированный образец нагреть до определенной для каждого сплава температуры. Происходит восстановление первоначальной формы: обратная деформация совпадает с точностью до знака с деформациями первой диаграммы. Поскольку первый этап деформирования может быть описан с по- мощью вариационного принципа, для которого доказывается существование обобщенных решений при произвольном нагружении, становится ясным, как объяснить обратную деформацию в рамках слегка видоизмененной теории пластичности. Нужно односвязную поверхность нагружения заменить двусвязной и, кроме того, вариационный принцип дополнить двумя законами термодинамики и принципом ортогональности термодинамических сил и потоков. Доказательство существования решений и в этом случае не встречает затруднений. Успешное применение теории пластичности при постоянной температуре порождает потребность получить аналогичный результат в более общем случае изменяющихся внешних сил и температуры. В работе изучается идеальная упругопластическая модель Мизеса при линейных скоростях деформаций. Учет упрочнения и использование произвольной поверхности нагружения не вызывают дополнительных трудностей.
Формулируется расширенный вариационный принцип типа Рейсснера, который вместе с законами термопластичности позволяет доказать существование обобщенных решений для трехмерных тел, изготовленных из материалов, обладающих памятью формы. Основная трудность, которую приходится преодолевать, состоит в выборе функционального пространства для скоростей и деформаций точек континуума. Для этой цели в статье используется пространство ограниченных деформаций — основной инструмент математической теории пластичности. Процесс доказательства показывает, что принятый в работе выбор функциональных пространств не является единственным. Изучение других возможных расширенных постановок вариационной задачи, наряду с выяснением регулярности обобщенных решений, представляется интересной задачей для будущих исследований.
Ключевые слова: сплошная среда, вариационный принцип, материалы с памятью формы, термопластичность, пространство ограниченной деформации, обобщенные решения.
Variational principle for shape memory solids under variable external forces and temperatures
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 541-555The quasistatic deformation problem for shape memory alloys is reviewed within the phenomenological mechanics of solids without microphysics analysis. The phenomenological approach is based on comparison of two material deformation diagrams. The first diagram corresponds to the active proportional loading when the alloy behaves as an ideal elastoplastic material; the residual strain is observed after unloading. The second diagram is relevant to the case when the deformed sample is heated to a certain temperature for each alloy. The initial shape is restored: the reverse distortion matches deformations on the first diagram, except for the sign. Because the first step of distortion can be described with the variational principle, for which the existence of the generalized solutions is proved under arbitrary loading, it becomes clear how to explain the reverse distortion within the slightly modified theory of plasticity. The simply connected surface of loading needs to be replaced with the doubly connected one, and the variational principle needs to be updated with two laws of thermodynamics and the principle of orthogonality for thermodynamic forces and streams. In this case it is not difficult to prove the existence of solutions either. The successful application of the theory of plasticity under the constant temperature causes the need to obtain a similar result for a more general case of variable external forces and temperatures. The paper studies the ideal elastoplastic von Mises model at linear strain rates. Taking into account hardening and arbitrary loading surface does not cause any additional difficulties.
The extended variational principle of the Reissner type is defined. Together with the laws of thermal plasticity it enables to prove the existence of the generalized solutions for three-dimensional bodies made of shape memory materials. The main issue to resolve is a challenge to choose a functional space for the rates and deformations of the continuum points. The space of bounded deformation, which is the main instrument of the mathematical theory of plasticity, serves this purpose in the paper. The proving process shows that the choice of the functional spaces used in the paper is not the only one. The study of other possible problem settings for the extended variational principle and search for regularity of generalized solutions seem an interesting challenge for future research.
-
Об определении модельной скорости звука для решения задачи о плоском сдвиговом течении жидкости методом гидродинамики сглаженных частиц
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 339-351Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.
В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\varepsilon_\rho$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\varepsilon_\rho$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.
Сопоставление функций $\varepsilon_\rho$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.
Ключевые слова: плоское сдвиговое течение, метод сглаженных частиц (SPH), ядро, дискретная аппроксимация физического свойства, изменение дискретной аппроксимации во времени, замыкающее уравнение состояния, искусственная диссипация, скорость звука.
The model sound speed determination for the plane shear fluid flow problem solving by the SPH method
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 339-351The problem discrete statement by the smoothed particle hydrodynamics method (SPH) include a discretization constants parameters set. Of them particular note is the model sound speed $c_0$, which relates the SPH-particle instantaneous density to the resulting pressure through the equation of state.
The paper describes an approach to the exact determination of the model sound speed required value. It is on the analysis based, how SPH-particle density changes with their relative shift. An example of the continuous medium motion taken the plane shear flow problem; the analysis object is the relative compaction function $\varepsilon_\rho$ in the SPH-particle. For various smoothing kernels was research the functions of $\varepsilon_\rho$, that allowed the pulsating nature of the pressures occurrence in particles to establish. Also the neighbors uniform distribution in the smoothing domain was determined, at which shaping the maximum of compaction in the particle.
Through comparison the function $\varepsilon_\rho$ with the SPH-approximation of motion equation is defined associate the discretization parameter $c_0$ with the smoothing kernel shape and other problem parameters. As a result, an equation is formulated that the necessary and sufficient model sound speed value provides finding. For such equation the expressions of root $c_0$ are given for three different smoothing kernels, that simplified from polynomials to numerical coefficients for the plane shear flow problem parameters.
-
Теоремы о предельной нагрузке для жесткопластических сплошных сред с внутренними степенями свободы и их приложение к континуальным сетчатым оболочкам
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 423-432Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.
Ключевые слова: жесткопластическая среда, репер Картана, определяющие уравнения, предельная нагрузка, память формы, оболочки вращения.
Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432Citations: 2 (RSCI).This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.
-
Численное моделирование в ПК FlowVision распыла и испарения сырья в потоке газа-теплоносителя при печном производстве технического углерода
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 921-939Технический углерод (сажа) — продукт, получаемый термическим разложением (пиролизом) углеводородов (как правило, нефти) в потоке газа-теплоносителя. Технический углерод широко применяется в качестве усиливающего компонента в производстве резин и пластических масс. В производстве шин используется 70% всего выпускаемого углерода. При печном производстве углерода жидкое углеводородное сырье впрыскивается форсунками в поток продуктов сгорания природного газа. Происходит распыл и испарение сырья с дальнейшим пиролизом. Важно, чтобы сырье полностью испарилось до начала пиролиза, иначе будет образовываться кокс, загрязняющий продукт. Для совершенствования технологии производства углерода, в частности обеспечения полного испарения сырья до начала пиролиза, невозможно обойтись без математического моделирования самого процесса. Оно является важнейшим способом получения наиболее полной и детальной информации об особенностях работы реактора.
В программном комплексе (ПК) FlowVision разрабатываются трехмерная математическая модель и метод расчета распыла и испарения сырья в потоке газа-теплоносителя. Для отработки методики моделирования в качестве сырья выбрана вода. Рабочими веществами в камере реактора являются продукты сгорания природного газа. Движение капель сырья и испарение в потоке газа моделируются в рамках эйлерова подхода взаимодействия дисперсной и сплошной сред. Представлены результаты расчета распыла и испарения сырья в реакторе для производства технического углерода. По найденному в каждый момент времени распределению множества капель распыла сырья в реакторе определяется важный параметр, характеризующий мелкость распыла — средний саутеровский диаметр.
Ключевые слова: математическое моделирование, FlowVision, дисперсная среда, дробление капель, испарение.
Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.
A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.
-
Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.
В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.
Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501Views (last year): 9.Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.
In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
Ключевые слова: социальнаяна пряженность, модель сплошной социальной стратификации, уравнение нелинейной диффузии, метод конечных объемов.
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
О границе упругопластических тел минимального объема
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.
Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.
Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.
Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.
Ключевые слова: границы тел, коэффициент предельной нагрузки, оптимальное проектирование, жесткопластическое тело, среды Максвелла и Мичелла.
On the boundaries of optimally designed elastoplastic structures
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 503-515Views (last year): 8.This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded surface can change in space but the limit load factor calculated based on the assumption that the bodies are filled with elastoplastic medium must not be less than a fixed value. Besides, all varying bodies are supposed to have some type of a limited volume sample manifold inside of them.
The following problem has been set: what is the maximum number of cavities (or holes in a two-dimensional case) that a minimum volume body (plate) can have under the above limitations? It is established that in order to define a mathematically correct problem, two extra conditions have to be met: the areas of the holes must be bigger than the small constant while the total length of the internal hole contour lines within the optimum figure must be minimum among the varying bodies. Thus, unlike most articles on optimum design of elastoplastic structures where parametric analysis of acceptable solutions is done with the set topology, this paper looks for the topological parameter of the design connectivity.
The paper covers the case when the load limit factor for the sample manifold is quite large while the areas of acceptable holes in the varying plates are bigger than the small constant. The arguments are brought forward that prove the Maxwell and Michell beam system to be the optimum figure under these conditions. As an example, microphotographs of the standard biological bone tissues are presented. It is demonstrated that internal holes with large areas cannot be a part of the Michell system. At the same the Maxwell beam system can include holes with significant areas. The sufficient conditions are given for the hole formation within the solid plate of optimum volume. The results permit generalization for three-dimensional elastoplastic structures.
The paper concludes with the setting of mathematical problems arising from the new problem optimally designed elastoplastic systems.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
Ключевые слова: интеллектуальные транспортные системы, теория транспортныхп отоков, макроскопические и микроскопические модели, квазигазодинамическая система уравнений, клеточные автоматы, многополосное движение, параллельные вычисления.
Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"