Результаты поиска по 'thermal plasticity':
Найдено статей: 3
  1. Grachev V.A., Nayshtut Yu.S.
    Variational principle for shape memory solids under variable external forces and temperatures
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 541-555

    The quasistatic deformation problem for shape memory alloys is reviewed within the phenomenological mechanics of solids without microphysics analysis. The phenomenological approach is based on comparison of two material deformation diagrams. The first diagram corresponds to the active proportional loading when the alloy behaves as an ideal elastoplastic material; the residual strain is observed after unloading. The second diagram is relevant to the case when the deformed sample is heated to a certain temperature for each alloy. The initial shape is restored: the reverse distortion matches deformations on the first diagram, except for the sign. Because the first step of distortion can be described with the variational principle, for which the existence of the generalized solutions is proved under arbitrary loading, it becomes clear how to explain the reverse distortion within the slightly modified theory of plasticity. The simply connected surface of loading needs to be replaced with the doubly connected one, and the variational principle needs to be updated with two laws of thermodynamics and the principle of orthogonality for thermodynamic forces and streams. In this case it is not difficult to prove the existence of solutions either. The successful application of the theory of plasticity under the constant temperature causes the need to obtain a similar result for a more general case of variable external forces and temperatures. The paper studies the ideal elastoplastic von Mises model at linear strain rates. Taking into account hardening and arbitrary loading surface does not cause any additional difficulties.

    The extended variational principle of the Reissner type is defined. Together with the laws of thermal plasticity it enables to prove the existence of the generalized solutions for three-dimensional bodies made of shape memory materials. The main issue to resolve is a challenge to choose a functional space for the rates and deformations of the continuum points. The space of bounded deformation, which is the main instrument of the mathematical theory of plasticity, serves this purpose in the paper. The proving process shows that the choice of the functional spaces used in the paper is not the only one. The study of other possible problem settings for the extended variational principle and search for regularity of generalized solutions seem an interesting challenge for future research.

  2. Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Drozdova E.A., Rode A.A.
    Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939

    Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.

    A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.

  3. Krektuleva R.A., Cherepanov O.I., Cherepanov R.O.
    Numerical solution of a two-dimensional quasi-static problem of thermoplasticity: residual thermal stress calculation for a multipass welding of heterogeneous steels
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 345-356

    A two-dimensional mathematical model was developed for estimating the stresses in welded joints formed during multipass welding of multilayer steels. The basis of the model is the system of equations that includes the Lagrange variational equation of incremental plasticity theory and the variational equation of heat conduction, which expresses the principle of M. Biot. Variational-difference method was used to solve the problems of heat conductivity and calculation of the transient temperature field, and then at each time step – for the quasi-static problem of thermoplasticity. The numerical scheme is based on triangular meshes, which gives a more accuracy in describing the boundaries of structural elements as compared to rectangular grids.

    Views (last year): 4. Citations: 6 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"