All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 18.
-
О разложении матриц при помощи метода стохастического градиентного спуска в приложении к задаче направляемой классификации микрочипов
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 131-140Многомерные данные, при использовании значительно большего количества признаков относительно меньшего числа наблюдений, порождают хорошо известную проблему переопределённой задачи. В связи с этим, представляется целесообразным описание данных в терминах меньшего числа мета-признаков, которые вычисляются при помощи так называемых матричных факторизаций. Такие факторизации способствуют уменьшению случайного шума при сохранении наиболее существенной информации. Три новых и взаимосвязанных метода предложены в этой статье: 1) факторизационный механизм градиентного спуска с двумя (согласно размерности микрочипа) гибкими и адаптируемыми параметрами обучения, включая явные формулы их автоматического пересчета, 2) непараметрический критерий для отбора количества факторов, и 3) неотрицательная модификация градиентной факторизации, которая не требует дополнительных вычислительных затрат в сравнении с базовой моделью. Мы иллюстрируем эффективность предложенных методов в приложении к задаче направляемой классификации данных в области биоинформатики.
Ключевые слова: матричная факторизация, ненаправляемое обучение, количество факторов, непараметрический критерий, неотрицательность, оставить одного извне, классификация.
On the stochastic gradient descent matrix factorization in application to the supervised classification of microarrays
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 131-140Citations: 4 (RSCI).Microarray datasets are highly dimensional, with a small number of collected samples in comparison to thousands of features. This poses a significant challenge that affects the interpretation, applicability and validation of the analytical results. Matrix factorizations have proven to be a useful method for describing data in terms of a small number of meta-features, which reduces noise, while still capturing the essential features of the data. Three novel and mutually relevant methods are presented in this paper: 1) gradient-based matrix factorization with two adaptive learning rates (in accordance with the number of factor matrices) and their automatic updates; 2) nonparametric criterion for the selection of the number of factors; and 3) nonnegative version of the gradient-based matrix factorization which doesn't require any extra computational costs in difference to the existing methods. We demonstrate effectiveness of the proposed methods to the supervised classification of gene expression data.
-
Накопление ошибки в методе сопряженных градиентов для вырожденных задач
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 459-472В данной работе рассматривается метод сопряженных градиентов при решении задачи минимизации квадратичной функции с аддитивным шумом в градиенте. Были рассмотрены три концепции шума: враждебный шум в линейном члене, стохастический шум в линейном члене и шум в квадратичном члене, а также комбинации первого и второго с последним. Экспериментально получено, что накопление ошибки отсутствует для любой из рассмотренных концепций, что отличается от фольклорного мнения, что, как и в ускоренных методах, накопление ошибки должно иметь место. В работе приведена мотивировка того, почему ошибка может и не накапливаться. Также экспериментально исследовалась зависимость ошибки решения как от величины (масштаба) шума, так и от размера решения при использовании метода сопряженных градиентов. Предложены и проверены гипотезы о зависимости ошибки в решении от масштаба шума и размера (2-нормы) решения для всех рассмотренных концепций. Оказалось, что ошибка в решении (по функции) линейно зависит от масштаба шума. В работе приведены графики, иллюстрирующие каждое отдельное исследование, а также детальное описание численных экспериментов, включающее в себя изложение способов зашумления как вектора, так и матрицы.
The error accumulation in the conjugate gradient method for degenerate problem
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 459-472In this paper, we consider the conjugate gradient method for solving the problem of minimizing a quadratic function with additive noise in the gradient. Three concepts of noise were considered: antagonistic noise in the linear term, stochastic noise in the linear term and noise in the quadratic term, as well as combinations of the first and second with the last. It was experimentally obtained that error accumulation is absent for any of the considered concepts, which differs from the folklore opinion that, as in accelerated methods, error accumulation must take place. The paper gives motivation for why the error may not accumulate. The dependence of the solution error both on the magnitude (scale) of the noise and on the size of the solution using the conjugate gradient method was also experimentally investigated. Hypotheses about the dependence of the error in the solution on the noise scale and the size (2-norm) of the solution are proposed and tested for all the concepts considered. It turned out that the error in the solution (by function) linearly depends on the noise scale. The work contains graphs illustrating each individual study, as well as a detailed description of numerical experiments, which includes an account of the methods of noise of both the vector and the matrix.
-
Экспериментальное сравнение алгоритмов поиска вектора PageRank
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"