Результаты поиска по 'стохастическая оптимизация':
Найдено статей: 20
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 821-823
  4. Алкуса М.С.
    О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217

    Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.

    Alkousa M.S.
    On some stochastic mirror descent methods for constrained online optimization problems
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217

    The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.

    Views (last year): 42.
  5. Гладин Е.Л., Зайнуллина К.Э.
    Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147

    В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.

    Gladin E.L., Zainullina K.E.
    Ellipsoid method for convex stochastic optimization in small dimension
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147

    The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.

  6. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Views (last year): 28.
  7. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

    Dvinskikh D.M., Pirau V.V., Gasnikov A.V.
    On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319

    In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.

    In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.

  8. Скорик С.Н., Пырэу В.В., Седов С.А., Двинских Д.М.
    Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391

    Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.

    Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.

    Skorik S.N., Pirau V.V., Sedov S.A., Dvinskikh D.M.
    Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391

    Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.

    The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.

  9. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

    Alpatov A.V., Peters E.A., Pasechnyuk D.A., Raigorodsky A.M.
    Stochastic optimization in digital pre-distortion of the signal
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 399-416

    In this paper, we test the performance of some modern stochastic optimization methods and practices with respect to the digital pre-distortion problem, which is a valuable part of processing signal on base stations providing wireless communication. In the first part of our study, we focus on the search for the best performing method and its proper modifications. In the second part, we propose the new, quasi-online, testing framework that allows us to fit our modeling results with the behavior of real-life DPD prototype, retest some selected of practices considered in the previous section and approve the advantages of the method appearing to be the best under real-life conditions. For the used model, the maximum achieved improvement in depth is 7% in the standard regime and 5% in the online regime (metric itself is of logarithmic scale). We also achieve a halving of the working time preserving 3% and 6% improvement in depth for the standard and online regime, respectively. All comparisons are made to the Adam method, which was highlighted as the best stochastic method for DPD problem in [Pasechnyuk et al., 2021], and to the Adamax method, which is the best in the proposed online regime.

  10. Чэнь Ц., Лобанов А.В., Рогозин А.В.
    Решение негладких распределенных минимаксных задач с применением техники сглаживания
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480

    Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.

    Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.

    Chen J., Lobanov A.V., Rogozin A.V.
    Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480

    Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.

    We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"