Результаты поиска по 'quadratic growth condition':
Найдено статей: 2
  1. Abakumov A.I., Izrailsky Y.G.
    The stabilizing role of fish population structure under the influence of fishery and random environment variations
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 609-620

    We study the influence of fishery on a structured fish population under random changes of habitat conditions. The population parameters correspond to dominant pelagic fish species of Far-Eastern seas of the northwestern part of the Pacific Ocean (pollack, herring, sardine). Similar species inhabit various parts of the Word Ocean. The species body size distribution was chosen as a main population feature. This characteristic is easy to measure and adequately defines main specimen qualities such as age, maturity and other morphological and physiological peculiarities. Environmental fluctuations have a great influence on the individuals in early stages of development and have little influence on the vital activity of mature individuals. The fishery revenue was chosen as an optimality criterion. The main control characteristic is fishing effort. We have chosen quadratic dependence of fishing revenue on the fishing effort according to accepted economic ideas stating that the expenses grow with the production volume. The model study shows that the population structure ensures the increased population stability. The growth and drop out of the individuals’ due to natural mortality smoothens the oscillations of population density arising from the strong influence of the fluctuations of environment on young individuals. The smoothing part is played by diffusion component of the growth processes. The fishery in its turn smooths the fluctuations (including random fluctuations) of the environment and has a substantial impact upon the abundance of fry and the subsequent population dynamics. The optimal time-dependent fishing effort strategy was compared to stationary fishing effort strategy. It is shown that in the case of quickly changing habitat conditions and stochastic dynamics of population replenishment there exists a stationary fishing effort having approximately the same efficiency as an optimal time-dependent fishing effort. This means that a constant or weakly varying fishing effort can be very efficient strategy in terms of revenue.

    Views (last year): 6. Citations: 2 (RSCI).
  2. Dvinskikh D.M., Pirau V.V., Gasnikov A.V.
    On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319

    In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.

    In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"