All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 29.
-
Об одном методе минимизации выпуклой липшицевой функции двух переменных на квадрате
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 379-395В статье получены оценки скорости сходимости по функции для недавно предложенного Ю.Е. Нестеровым метода минимизации выпуклой липшицевой функции двух переменных на квадрате с фиксированной стороной. Идея метода — деление квадрата на меньшие части и постепенное их удаление так, чтобы в оставшейся достаточно малой части все значения целевой функции были достаточно близки к оптимальному. При этом метод заключается вр ешении вспомогательных задач одномерной минимизации вдоль разделяющих отрезков и не предполагает вычисления точного значения градиента целевого функционала. Основной результат работы о необходимом количестве итераций для достижений заданной точности доказан вкла ссе гладких выпуклых функций, имеющих липшицев градиент. При этом отмечено, что свойство липшицевости градиента достаточно потребовать не на всем квадрате, а лишь на некоторых отрезках. Показано, что метод может работать при наличии погрешностей решения вспомогательных одномерных задач, а также при вычислении направлений градиентов. Также описана ситуация, когда возможно пренебречь временными затратами (или уменьшить их) на решение вспомогательных одномерных задач. Для некоторых примеровэк спериментально продемонстрировано, что метод может эффективно работать и на некоторых классах негладких функций. При этом построен пример простой негладкой функции, для которой при неудачном выборе субградиента даже в случае точного решения вспомогательных одномерных задач может не наблюдаться сходимость метода. Проведено сравнение работы метода Ю.Е. Нестерова, метода эллипсоидов и градиентного спуска для некоторых гладких выпуклых функций. Эксперименты показали, что метод Ю.Е. Нестерова может достигать желаемой точности решения задачи за меньшее (в сравнении с другими рассмотренными методами) время. В частности, замечено, что при увеличении точности искомого решения время работы метода Ю.Е. Нестерова может расти медленнее, чем время работы метода эллипсоидов.
Ключевые слова: задача минимизации, выпуклый функционал, липшицев функционал, липшицев градиент, негладкий функционал, субградиент, градиентный спуск, метод эллипсоидов, скорость сходимости.
One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 379-395Views (last year): 34.In the article we have obtained some estimates of the rate of convergence for the recently proposed by Yu. E.Nesterov method of minimization of a convex Lipschitz-continuous function of two variables on a square with a fixed side. The idea of the method is to divide the square into smaller parts and gradually remove them so that in the remaining sufficiently small part. The method consists in solving auxiliary problems of one-dimensional minimization along the separating segments and does not imply the calculation of the exact value of the gradient of the objective functional. The main result of the paper is proved in the class of smooth convex functions having a Lipschitz-continuous gradient. Moreover, it is noted that the property of Lipschitzcontinuity for gradient is sufficient to require not on the whole square, but only on some segments. It is shown that the method can work in the presence of errors in solving auxiliary one-dimensional problems, as well as in calculating the direction of gradients. Also we describe the situation when it is possible to neglect or reduce the time spent on solving auxiliary one-dimensional problems. For some examples, experiments have demonstrated that the method can work effectively on some classes of non-smooth functions. In this case, an example of a simple non-smooth function is constructed, for which, if the subgradient is chosen incorrectly, even if the auxiliary one-dimensional problem is exactly solved, the convergence property of the method may not hold. Experiments have shown that the method under consideration can achieve the desired accuracy of solving the problem in less time than the other methods (gradient descent and ellipsoid method) considered. Partially, it is noted that with an increase in the accuracy of the desired solution, the operating time for the Yu. E. Nesterov’s method can grow slower than the time of the ellipsoid method.
-
Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.
Ключевые слова: негладкая условная оптимизация, квазивыпуклый функционал, адаптивный зеркальный спуск, уровень гладкости, гёльдеров целевой функционал, оптимальный метод.
Mirror descent for constrained optimization problems with large subgradient values of functional constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
Ключевые слова: субградиентный метод, острый минимум, квазивыпуклая функция, слабо $\beta$-квазивыпуклая функция, липшицева функция, $\delta$-субградиент.
Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"