All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Алгоритм идентификации вихрей по векторам скорости течения на основе простейшей математической модели вихревой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1477-1493Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.
Ключевые слова: вихревые структуры, алгоритм идентификации, системы точечных вихрей, метод градиентного спуска.
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
-
Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.
Ключевые слова: нелинейные дифференциальные уравнения, непрерывный аналог метода Ньютона, конечно-разностная аппроксимация.
NINE: computer code for numerical solution of the boundary problems for nonlinear differential equations on the basis of CANM
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 315-324Views (last year): 1. Citations: 1 (RSCI).The computer code NINE (Newtonian Iteration for Nonlinear Equation) for numerical solution of the boundary problems for nonlinear differential equations on the basis of continuous analogue of the Newton method (CANM) is presented. Numerov’s finite-difference appproximation is applied to provide the fourth accuracy order with respect to the discretization stepsize. Algorithms of calculating the Newtonian iterative parameter are discussed. A convergence of iteration process in dependence on choice of the iteration parameter has been studied. Results of numerical investigation of the particle-like solutions of the scalar field equation are given.
-
Моделирование плотных материалов методом упаковки сферополиэдров
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 757-766В работе предложен новый метод моделирования плотных материалов на основе алгоритма упаковки сферополиэдров, описана математическая модель сферополиэдра и обсуждены результаты вычислительных экспериментов на различных упаковках сферополиэдров. Результаты экспериментов показали сходимость метода. Проведенные эксперименты включают исследования упаковок сферополиэдров различной формы, полидисперсных и ориентированных структур. Метод может быть применен для виртуального проектирования плотных материалов, имеющих в составе несферические частицы.
The modeling of dense materials with spherepolyhedra packing method
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 757-766Views (last year): 7. Citations: 6 (RSCI).The paper presents a new dense material modeling method based on spherepolyhedra packing algorithm, describes mathematical model of spherepolyhedra and discuss the results of computation experiments on different spherepolyhedra packs. The results of experiments show convergence of proposed method. Experiments include investigations of spherepolyhedra packs with different shapes, polydisperse and oriented structures. Presented method would be applied to virtual design of dense materials composed of non-spherical particles.
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
Ключевые слова: уравнение влагопереноса, интегро-дифференциальное уравнение, разностные схемы, оператор Бесселя, априорная оценка, устойчивость, сходимость.
Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.
-
Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.
Ключевые слова: диффузия, уравнение Ланжевена, стохастические дифференциальные уравнения, корреляция, порядок сходимости.
Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338Views (last year): 5. Citations: 4 (RSCI).The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.
-
Применение технологий численного моделирования при проектировании систем отделения самовыходом
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 597-606В статье изложены основные положения методики расчета отделения полезной нагрузки (объектов различного назначения с собственным движительным комплексом) от подводного носителя методом самовыхода с использованием современных методов численной гидродинамики (CFD-технологий). Приводится описание метода отделения самовыходом, его достоинства и недостатки. Приводятся результаты исследования сходимости по сетке конечно-объемной модели по критерию «точность–время», а также результаты сопоставления расчета с экспериментом (валидации модели). Валидация модели проводилась по имеющимся данным экспериментального определения тяговых характеристик водометного движительного комплекса натурного образца в опытовом бассейне. Расчеты тяговых характеристик водометного движительного комплекса проводились с применением программного комплекса FlowVision версии 3.10. На основании сопоставления результатов расчетов для условий проведения экспериментов была определена погрешность расчетной модели водометного движительного комплекса, которая составила не более 5 % в диапазоне поступей работы водометного движительного комплекса, реализуемых в процессе отделения методом самовыхода. Полученное значение погрешности расчета тяговых характеристик используется для определения предельных расчетных значений скорости отделения объекта от носителя (минимальные и максимальные значения). Рассмотренная задача является значимой с научной точки зрения благодаря особенностям подхода к моделированию водометного движительного комплекса совместно с движением отделяемого объекта, а также с практической точки зрения благодаря возможности получения с высокой степенью достоверности параметров отделения объектов от подводных аппаратов методом самовыхода, условия работы которых предполагают движение в замкнутых объемах, уже на стадии проектирования.
Ключевые слова: CFD-технологии, водометный движитель, моделирование вращения, тяга движительного комплекса, самовыход, самоходные испытания, исследования сходимости по сетке, швартовный режим.
Application of computational simulation techniques for designing swim-out release systems
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 597-606The article describes the basic approaches of the calculation procedure of payload swim-out (objects of different function with own propulsor) from the underwater carrier a method of a self-exit using modern CFD technologies. It contains the description of swim-out by a self-exit method, its advantages and disadvantages. Also it contains results of research of convergence on a grid of a final-volume model with accuracy-time criterion, and results of comparison of calculation with experiment (validation of models). Validation of models was carried out using the available data of experimental definition of traction characteristics of water-jet propulsor of the natural sample in the development pool. Calculations of traction characteristics of water-jet propulsor were carried out via software package FlowVision ver. 3.10. On the basis of comparison of results of calculations for conditions of carrying out of experiments the error of water-jet propulsor calculated model which has made no more than 5% in a range of advance coefficient water-jet propulsor, realised in the process of swim-out by a selfexit method has been defined. The received value of an error of calculation of traction characteristics is used for definition of limiting settlement values of speed of branch of object from the carrier (the minimum and maximum values). The considered problem is significant from the scientific point of view thanks to features of the approach to modelling hydrojet moving system together with movement of separated object, and also from the practical point of view, thanks to possibility of reception with high degree of reliability of parametres swim-out of objects from sea bed vehicles a method of the self-exit which working conditions are assumed by movement in the closed volumes, already on a design stage.
-
Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 321-334В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сде- лана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задачм ы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.
Ключевые слова: невыпуклая оптимизация, композитная оптимизация, неточный оракул, непрерывный по Гёльдеру градиент, универсальный градиентный метод.
A gradient method with inexact oracle for composite nonconvex optimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.
-
Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 709-728Работа посвящена численному моделированию плоской неизотермической нелинейной фильтрации в пористой среде. Рассматривается двумерная нестационарная задача течения высоковязкой нефти, воды и пара с фазовыми переходами. Нефтяная фаза представлена двумя псевдокомпонентами: легкой и тяжелой фракциями, которые, как и водный компонент, могут присутствовать в газовой фазе. Нефть проявляет вязкопластическую реологию, ее фильтрация не подчиняется классическому линейному закону Дарси. При моделировании учтена не только зависимость плотности и вязкости флюидов от температуры, но и улучшение реологических свойств нефти с ростом температуры.
Для численного решения задачи применен метод линий тока с расщеплением по физическим процессам, заключающийся в отделении конвективного переноса, направленного вдоль скорости фильтрации, от теплопроводности и гравитации. Предложен новый подход применения метода линий тока, позволяющий корректно моделировать задачи нелинейной фильтрации с реологией, зависящей от температуры. Суть этого алгоритма заключается в рассмотрении процесса интегрирования как совокупности квазиравновесных состояний, которые достигаются путем решения системы на глобальной сетке и между которыми решение проводится на сетке из линий тока. Использование метода линий тока позволяет не только ускорить расчеты фильтрации, но и получить физически достоверную картину решения, так как интегрирование системы происходит на сетке, совпадающей с направлением течения флюидов.
Помимо метода линий тока, в работе представлен алгоритм учета негладких коэффициентов, возникающих при решении уравнения течения вязкопластической нефти. Использование этого алгоритма позволяет сохранить достаточно большой шаг по времени и не изменяет физическую картину решения.
Полученные результаты сопоставлены с известными аналитическими решениями, а также с результатами, полученными при расчете в коммерческом пакете. Анализ проведенных тестовых расчетов на сходимость по количеству линий тока, а также на разных сетках на линиях тока обосновывает применимость предлагаемого алгоритма, а уменьшение времени расчета, по сравнению с традиционными методами, демонстрирует практическую значимость этого подхода.
Ключевые слова: расщепление по физическим процессам, метод линий тока, композиционное моделирование, нелинейная фильтрация.
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Views (last year): 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.
Ключевые слова: субградиентный метод, липшицева функция, острый минимум, шаг Б. Т. Поляка, квазивыпуклая функция, слабовыпуклая функция.
Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 105-122In this paper, we consider two variants of the concept of sharp minimum for mathematical programming problems with quasiconvex objective function and inequality constraints. It investigated the problem of describing a variant of a simple subgradient method with switching along productive and non-productive steps, for which, on a class of problems with Lipschitz functions, it would be possible to guarantee convergence with the rate of geometric progression to the set of exact solutions or its vicinity. It is important that to implement the proposed method there is no need to know the sharp minimum parameter, which is usually difficult to estimate in practice. To overcome this problem, the authors propose to use a step adjustment procedure similar to that previously proposed by B. T. Polyak. However, in this case, in comparison with the class of problems without constraints, it arises the problem of knowing the exact minimal value of the objective function. The paper describes the conditions for the inexactness of this information, which make it possible to preserve convergence with the rate of geometric progression in the vicinity of the set of minimum points of the problem. Two analogs of the concept of a sharp minimum for problems with inequality constraints are considered. In the first one, the problem of approximation to the exact solution arises only to a pre-selected level of accuracy, for this, it is considered the case when the minimal value of the objective function is unknown; instead, it is given some approximation of this value. We describe conditions on the inexact minimal value of the objective function, under which convergence to the vicinity of the desired set of points with a rate of geometric progression is still preserved. The second considered variant of the sharp minimum does not depend on the desired accuracy of the problem. For this, we propose a slightly different way of checking whether the step is productive, which allows us to guarantee the convergence of the method to the exact solution with the rate of geometric progression in the case of exact information. Convergence estimates are proved under conditions of weak convexity of the constraints and some restrictions on the choice of the initial point, and a corollary is formulated for the convex case when the need for an additional assumption on the choice of the initial point disappears. For both approaches, it has been proven that the distance from the current point to the set of solutions decreases with increasing number of iterations. This, in particular, makes it possible to limit the requirements for the properties of the used functions (Lipschitz-continuous, sharp minimum) only for a bounded set. Some computational experiments are performed, including for the truss topology design problem.
-
Численное исследование турбулентного потока Тейлора – Куэтта
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 395-408В настоящей работе исследован турбулентный поток Тейлора – Куэтта с помощью двухмерного моделирования на базе осредненных уравнений Навье – Стокса (RANS) и нового двухжидкостного подхода к турбулентности при числах Рейнольдса в диапазоне от 1000 до 8000. Исследуется течение, обусловленное вращающимся внутренним и неподвижным внешним цилиндрами. Рассмотрен случай соотношения диаметров цилиндров 1:2. Известно, что возникающее круговое течение характеризуется анизотропной турбулентностью и математическое моделирование таких потоков является сложной задачей. Для описания таких потоков используются либо методы прямого моделирования, которые требуют больших вычислительных затрат, либо достаточно трудоемкие методы рейнольдсовых напряжений или же линейные RANS-модели со специальными поправками на вращение, которые способны описывать анизотропную турбулентность. В работе для сравнения различных подходов к моделированию турбулентности представлены численные результаты линейных RANS-моделей SARC, SST-RC, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012, прямого моделирования турбулентности DNS, а также новой двухжидкостной модели. Показано, что недавно разработанная двухжидкостная модель адекватно описывает рассматриваемый поток. Помимо этого, двухжидкостная модель проста для численной реализации и имеет хорошую сходимость.
Ключевые слова: вращающийся поток, осредненные по Рейнольдсу уравнения Навье – Стокса, модель SSG/LRR-RSM-w2012, модель SARC, модель SST-RC, новая двухжидкостная модель.
Numerical study of Taylor – Cuetta turbulent flow
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 395-408In this paper, the turbulent Taylor – Couette flow is investigated using two-dimensional modeling based on the averaged Navier – Stokes (RANS) equations and a new two-fluid approach to turbulence at Reynolds numbers in the range from 1000 to 8000. The flow due to a rotating internal and stationary external cylinders. The case of ratio of cylinder diameters 1:2 is considered. It is known that the emerging circular flow is characterized by anisotropic turbulence and mathematical modeling of such flows is a difficult task. To describe such flows, either direct modeling methods are used, which require large computational costs, or rather laborious Reynolds stress methods, or linear RANS models with special corrections for rotation, which are able to describe anisotropic turbulence. In order to compare different approaches to turbulence modeling, the paper presents the numerical results of linear RANS models SARC, SST-RC, Reynolds stress method SSG/LRR-RSM-w2012, DNS direct turbulence modeling, as well as a new two-fluid model. It is shown that the recently developed twofluid model adequately describes the considered flow. In addition, the two-fluid model is easy to implement numerically and has good convergence.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"