All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 6.
-
Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.
Ключевые слова: двойная пористость, усреднение, двухфазное течение, капиллярная нерав- новесность, динамическое капиллярное давление, динамические относительные фазовые проницаемости.
Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.
-
Модель анизотропной прочности со скалярным параметром поврежденности
Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 937-942В работе обсуждается возможность моделирования анизотропии прочности слоистой упругой среды с использованием скалярного параметра поврежденности. Сформулированы термодинамически согласованные определяющие уравнения. С помощью пакета SIMULIA/Abaqus моделируется процесс растяжения и сжатия образцов. Результаты расчета с использованием предложенной модели сравниваются с известными из литературы экспериментальными данными и предсказаниями традиционных моделей.
Ключевые слова: разрушение, теория поврежденности, анизотропия, термодинамическая согласованность, пользовательские подпрограммы.
Modeling of anisotropic strength using scalar damage parameter
Computer Research and Modeling, 2014, v. 6, no. 6, pp. 937-942Views (last year): 1.The paper discusses the possibility of modeling the strength anisotropy of layered elastic medium using a scalar damage parameter. Thermodynamically consistent constitutive equations are formulated. Using SIMULIA / Abaqus we numerically simulated the stretching and compression of the samples. The results of calculation using the proposed model are compared with the known experimental data from the literature and the predictions of traditional models.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"