Результаты поиска по 'user subroutines':
Найдено статей: 2
  1. Izvekov O.Ya.
    Modeling of anisotropic strength using scalar damage parameter
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 937-942

    The paper discusses the possibility of modeling the strength anisotropy of layered elastic medium using a scalar damage parameter. Thermodynamically consistent constitutive equations are formulated. Using SIMULIA / Abaqus we numerically simulated the stretching and compression of the samples. The results of calculation using the proposed model are compared with the known experimental data from the literature and the predictions of traditional models.

    Views (last year): 1.
  2. Lopatin N.V., Kydrjavtsev E.A., Panin P.V., Vidumkina S.V.
    Simulation of forming of UFG Ti-6-4 alloy at low temperature of superplasticity
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 127-133

    Superplastic forming of Ni and Ti based alloys is widely used in aerospace industry. The main advantage of using the effect of superplasticity in sheet metal forming processes is a feasibility of forming materials with a high amount of plastic strain in conditions of prevailing tensile stresses. This article is dedicated to study commercial FEM software SFTC DEFORM application for prediction thickness deviation during low temperature superplastic forming of UFG Ti-6-4 alloy. Experimentally, thickness deviation during superplastic forming can be observed in the local area of plastic deformation and this process is aggravated by local softening of the metal and this is stipulated by microstructure coarsening. The theoretical model was prepared to analyze experimentally observed metal flow. Two approaches have been used for that. The first one is the using of integrated creep rheology model in DEFORM. As superplastic effect is observed only in materials with fine and ultrafine grain sizes the second approach is carried out using own user procedures for rheology model which is based on microstructure evolution equations. These equations have been implemented into DEFORM via Fortran user’s solver subroutines. Using of FEM simulation for this type of forming allows tracking a strain rate in different parts of a workpiece during a process, which is crucial for maintaining the superplastic conditions. Comparison of these approaches allows us to make conclusions about effect of microstructure evolution on metal flow during superplastic deformation. The results of the FEM analysis and theoretical conclusions have been approved by results of the conducted Erichsen test. The main issues of this study are as follows: a) the DEFORM software allows an engineer to predict formation of metal shape under the condition of low-temperature superplasticity; b) in order to augment the accuracy of the prediction of local deformations, the effect of the microstructure state of an alloy having sub-microcristalline structure should be taken into account in the course of calculations in the DEFORM software.

    Views (last year): 10.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"