All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Квазиклассическое приближение для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 205-219Для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова в классе траекторно-сосредоточенных функций построены квазиклассические асимптотики с точностью $O(D^{N/2})$, $N\geqslant3$. С помощью операторов симметрии получен счетный набор асимптотических решений исходного уравнения с точностью $O(D^{3/2})$. В явном виде построены асимптотические решения двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, система Эйнштейна–Эренфеста.
Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219Views (last year): 4.Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
form. -
Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова на больших временах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 543-558Для одномерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова построены асимптотические решения, позволяющие описывать квазистационарные структуры. Построены асимптотические решения динамической системы Эйнштейна–Эренфеста для двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова. Эти решения описывают свойства двумерных структур, локализованных на одномерных многообразиях.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, образование структур, система Эйнштейна–Эренфеста.
Large-time asymptotic solutions of the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558Views (last year): 1. Citations: 3 (RSCI).Asymptotic solutions are constructed for the 1D nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein–Ehrenfest system for the 2D Fisher–Kolmogorov–Petrovskii–Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.
-
Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 55-61Численными методами исследовано формирование пространственных структур, описываемых скалярным уравнением Фишера–Колмогорова–Петровского–Пискунова с нелокальными конкурентными потерями и конвекцией, линейно зависящей от пространственных переменных. Показано, что при соответствующем выборе значений параметров уравнения, начальная функция, локализованная в окрестности точки, трансформируется в функцию, локализованную в окрестности кольца с симметрично расположенными на нем локальными максимумами. Радиус кольца и число максимумов зависят от конвекции.
Ключевые слова: реакция-диффузия, конвекция, нелокальные конкурентные потери, уравнение Фишера–Колмогорова–Петровского–Пискунова.
Convection effect on two-dimensional dynamics in the nonlocal reaction-diffusion model
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 55-61Views (last year): 3. Citations: 1 (RSCI).Pattern formation described by the scalar Fisher–Kolmogorov–Petrovsky–Piscounov equation with nonlocal competition loses and convection linear on coordinates is considered numerically. Initial function localized around a point is shown to transform in a function localized around a ring with symmetrically sited local maxima. The ring radius and number of maxima depend on convection.
-
Пространственно-временные модели распространения информационно-коммуникационных технологий
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.
Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.
Ключевые слова: диффузия инноваций, бегущая волна, пространственно-временная модель, мобильная связь, информационно-коммуникационные технологии.
Spatio-temporal models of ICT diffusion
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.
The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"