Результаты поиска по 'цепь Маркова':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 939-942
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  3. Рассмотрена задача нахождения инвариантной меры неприводимой цепи Маркова с дискретным временем и конечным пространством состояний. Для такой цепи Маркова существует и единственна инвариантная мера, определенная с точностью до умножения на константу. Для каждого состояния эта инвариантная мера получена в виде суммы $n^{n−2}$ неотрицательных слагаемых, где $n$ — число состояний. Каждое слагаемое является произведением $n − 1$ условных вероятностей перехода. В стандартном представлении цепи Маркова ориентированным графом каждому состоянию ставится в соответствие вершина графа, а условной вероятности перехода — ориентированное ребро. В этом представлении каждое слагаемое в рассматриваемом выражении для инвариантной меры некоторого состояния взаимно-однозначно соответствует обратно ориентированному дереву с корнем в вершине, являющейся образом рассматриваемого состояния. Ребра ориентированы по направлению к корню. Дерево включает все вершины — образы состояний. Каждое слагаемое является произведением всех тех и только тех условных вероятностей перехода, образами которых являются ориентированные ребра соответствующего дерева.

    A problem of finding of an invariant measure of irreducible discrete-time Markov chain with a finite state space is considered. There is a unique invariant measure for such Markov chain that can be multiplied by an arbitrary constant. A representation of a Markov chain by a directed graph is considered. Each state is represented by a vertex, and each conditional transition probability is represented by a directed edge. It is proved that an invariant measure for each state is a sum of $n^{n−2}$ non-negative summands, where $n$ is a cardinality of state space. Each summand is a product of $n − 1$ conditional transition probabilities and is represented by an opposite directed tree that includes all vertices. The root represents the considered state. The edges are directed to the root. This result leads to methods of analyses and calculation of an invariant measure that is based on a graph theory.

    Views (last year): 1.
  4. Прохоров И.В., Жуплев А.С.
    Об эффективности методов максимального сечения в теории переноса излучения
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 573-582

    В работе рассматриваются две модификации метода максимального сечения для решения стационарного уравнения переноса излучения в трехмерной неоднородной среде. Обе модификации основаны на применении метода Монте-Карло к суммированию ряда Неймана для решения уравнения переноса. Одна из них — традиционная, вторая — основана на использовании ветвящихся цепей Маркова. Проводится численное сравнение этих алгоритмов.

    Prokhorov I.V., Zhuplev A.S.
    On the efficiency of the maximum cross section method in radiation transport theory
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582

    We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.

    Views (last year): 4. Citations: 2 (RSCI).
  5. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

    Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"