Результаты поиска по 'Markov chain':
Найдено статей: 10
  1. Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 229-233
  2. A problem of finding of an invariant measure of irreducible discrete-time Markov chain with a finite state space is considered. There is a unique invariant measure for such Markov chain that can be multiplied by an arbitrary constant. A representation of a Markov chain by a directed graph is considered. Each state is represented by a vertex, and each conditional transition probability is represented by a directed edge. It is proved that an invariant measure for each state is a sum of $n^{n−2}$ non-negative summands, where $n$ is a cardinality of state space. Each summand is a product of $n − 1$ conditional transition probabilities and is represented by an opposite directed tree that includes all vertices. The root represents the considered state. The edges are directed to the root. This result leads to methods of analyses and calculation of an invariant measure that is based on a graph theory.

    Views (last year): 1.
  3. Nemchinova A.V.
    Marks of stochastic determinacy of forest ecosystem autogenous succession in Markov models
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 255-265

    This article describes a method to model the course of forest ecosystem succession to the climax state by means of a Markov chain. In contrast to traditional methods of forest succession modelling based on changes of vegetation types, several variants of the vertical structure of communities formed by late-successional tree species are taken as the transition states of the model. Durations of succession courses from any stage are not set in absolute time units, but calculated as the average number of steps before reaching the climax in a unified time scale. The regularities of succession courses are revealed in the proper time of forest ecosystems shaping. The evidences are obtained that internal features of the spatial and population structure do stochastically determine the course and the pace of forest succession. The property of developing vegetation of forest communities is defined as an attribute of stochastic determinism in the course of autogenous succession.

    Views (last year): 2. Citations: 2 (RSCI).
  4. Prokhorov I.V., Zhuplev A.S.
    On the efficiency of the maximum cross section method in radiation transport theory
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582

    We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.

    Views (last year): 4. Citations: 2 (RSCI).
  5. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  6. Skachkov D.A., Gladyshev S.I., Raigorodsky A.M.
    Experimental comparison of PageRank vector calculation algorithms
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379

    Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.

  7. Aronov I.Z., Maksimova O.V., Zazhigalkin A.V.
    Investigation of time to reach consensus on the work of technical committees on standardization based on regular Markov chains
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 941-950

    In this paper construct the mathematical model for consensus in technical committees for standardization (TC), based on the consensus model proposed DeGroot. The basic problems of achieving consensus in the development of consensus standards in terms of the proposed model are discussed. The results of statistical modeling characterizing the dependence of time to reach consensus on the number of members of the TC and their authoritarianism are presented. It has been shown that increasing the number of TC experts and authoritarianism negative impact on the time to reach a consensus and increase fragmentation of the TC.

    Views (last year): 5. Citations: 8 (RSCI).
  8. Aronov I.Z., Maksimova O.V.
    Modeling consensus building in conditions of dominance in a social group
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1067-1078

    In many social groups, for example, in technical committees for standardization, at the international, regional and national levels, in European communities, managers of ecovillages, social movements (occupy), international organizations, decision-making is based on the consensus of the group members. Instead of voting, where the majority wins over the minority, consensus allows for a solution that each member of the group supports, or at least considers acceptable. This approach ensures that all group members’ opinions, ideas and needs are taken into account. At the same time, it is noted that reaching consensus takes a long time, since it is necessary to ensure agreement within the group, regardless of its size. It was shown that in some situations the number of iterations (agreements, negotiations) is very significant. Moreover, in the decision-making process, there is always a risk of blocking the decision by the minority in the group, which not only delays the decisionmaking time, but makes it impossible. Typically, such a minority is one or two odious people in the group. At the same time, such a member of the group tries to dominate in the discussion, always remaining in his opinion, ignoring the position of other colleagues. This leads to a delay in the decision-making process, on the one hand, and a deterioration in the quality of consensus, on the other, since only the opinion of the dominant member of the group has to be taken into account. To overcome the crisis in this situation, it was proposed to make a decision on the principle of «consensus minus one» or «consensus minus two», that is, do not take into account the opinion of one or two odious members of the group.

    The article, based on modeling consensus using the model of regular Markov chains, examines the question of how much the decision-making time according to the «consensus minus one» rule is reduced, when the position of the dominant member of the group is not taken into account.

    The general conclusion that follows from the simulation results is that the rule of thumb for making decisions on the principle of «consensus minus one» has a corresponding mathematical justification. The simulation results showed that the application of the «consensus minus one» rule can reduce the time to reach consensus in the group by 76–95%, which is important for practice.

    The average number of agreements hyperbolically depends on the average authoritarianism of the group members (excluding the authoritarian one), which means the possibility of delaying the agreement process at high values of the authoritarianism of the group members.

  9. Maksimova O.V., Aronov I.Z.
    Mathematical consensus model of loyal experts based on regular Markov chains
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1381-1393

    The theoretical study of consensus makes it possible to analyze the various situations that social groups that make decisions in this way have to face in real life, abstracting from the specific characteristics of the groups. It is relevant for practice to study the dynamics of a social group consisting of loyal experts who, in the process of seeking consensus, yield to each other. In this case, psychological “traps” such as false consensus or groupthink are possible, which can sometimes lead to managerial decisions with dire consequences.

    The article builds a mathematical consensus model for a group of loyal experts based on modeling using regular Markov chains. Analysis of the model showed that with an increase in the loyalty (decrease in authoritarianism) of group members, the time to reach consensus increases exponentially (the number of agreements increases), which is apparently due to the lack of desire among experts to take part of the responsibility for the decision being made. An increase in the size of such a group leads (ceteris paribus):

    – to reduce the number of approvals to consensus in the conditions of striving for absolute loyalty of members, i. e. each additional loyal member adds less and less “strength” to the group;

    – to a logarithmic increase in the number of approvals in the context of an increase in the average authoritarianism of members. It is shown that in a small group (two people), the time for reaching consensus can increase by more than 10 times compared to a group of 5 or more members), in the group there is a transfer of responsibility for making decisions.

    It is proved that in the case of a group of two absolutely loyal members, consensus is unattainable.

    A reasonable conclusion is made that consensus in a group of loyal experts is a special (special) case of consensus, since the dependence of the time until consensus is reached on the authoritarianism of experts and their number in the group is described by different curves than in the case of a regular group of experts.

  10. Aronov I.Z., Maksimova O.V.
    Theoretical modeling consensus building in the work of standardization technical committees in coalitions based on regular Markov chains
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1247-1256

    Often decisions in social groups are made by consensus. This applies, for example, to the examination in the technical committee for standardization (TC) before the approval of the national standard by Rosstandart. The standard is approved if and only if the secured consensus in the TC. The same approach to standards development was adopted in almost all countries and at the regional and international level. Previously published works of authors dedicated to the construction of a mathematical model of time to reach consensus in technical committees for standardization in terms of variation in the number of TC members and their level of authoritarianism. The present study is a continuation of these works for the case of the formation of coalitions that are often formed during the consideration of the draft standard to the TC. In the article the mathematical model is constructed to ensure consensus on the work of technical standardization committees in terms of coalitions. In the framework of the model it is shown that in the presence of coalitions consensus is not achievable. However, the coalition, as a rule, are overcome during the negotiation process, otherwise the number of the adopted standards would be extremely small. This paper analyzes the factors that influence the bridging coalitions: the value of the assignment and an index of the effect of the coalition. On the basis of statistical modelling of regular Markov chains is investigated their effects on the time to ensure consensus in the technical Committee. It is proved that the time to reach consensus significantly depends on the value of unilateral concessions coalition and weakly depends on the size of coalitions. Built regression model of dependence of the average number of approvals from the value of the assignment. It was revealed that even a small concession leads to the onset of consensus, increasing the size of the assignment results (with other factors being equal) to a sharp decline in time before the consensus. It is shown that the assignment of a larger coalition against small coalitions takes on average more time before consensus. The result has practical value for all organizational structures, where the emergence of coalitions entails the inability of decision-making in the framework of consensus and requires the consideration of various methods for reaching a consensus decision.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"