All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 3.
-
Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.
Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости.
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Views (last year): 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
-
Решение краевых задач теории тонких упругих оболочек методом Неймана
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1143-1153Изучаются возможности применения метода Неймана для решения краевых задач теории тонких упругих оболочек. Приводится вариационная формулировка задач статического расчета оболочек, позволяющая рассматривать проблемы в рамках пространств обобщенных функций. Доказывается сходимость процедуры Неймана для оболочек с отверстиями, когда граничный контур закреплен не полностью. Численная реализация метода Неймана обычно требует значительного времени для получения надежного результата. В статье предлагается способ, улучшающий скорость сходимости процесса, позволяющий применить параллельные вычисления и их контроль во время работы алгоритма.
Ключевые слова: краевые задачи, теория тонких упругих оболочек, метод Неймана, вариационные принципы, неравенство Корна, обобщенные функции, теоремы вложения, тензор Грина.
Neumann's method to solve boundary problems of elastic thin shells
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153Views (last year): 3.This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.
- Views (last year): 1.
-
Вычислительная схема и параллельная реализация для моделирования системы длинных джозефсоновских переходов
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 593-604Рассматривается модель стека длинных джозефсоновских переходов (ДДП), состоящего из чередующихся сверхпроводящих слоев и слоев диэлектрика, с учетом индуктивной и емкостной связи между слоями. Модель описывается системой нелинейных дифференциальных уравнений в частных производных относительно разности фаз и напряжения между соседними сверхпроводящими слоями в стеке ДДП, с соответствующими начальными и граничными условиями. Численное решение этой системы уравнений основано на использовании стандартных трехточечных конечно-разностных формул для дискретной аппроксимации по пространственной координате и применении четырехшагового метода Рунге–Кутты для решения полученной задачи Коши. Разработанный параллельный алгоритм реализован на основе технологии MPI (Message Passing Interface). В работе дана математическая постановка задачи в рамках рассматриваемой модели, описаны вычислительная схема и методика расчета вольт-амперных характеристик системы ДДП, представлены два варианта параллельной реализации. Продемонстрировано влияние индуктивной и емкостной связи между ДДП на структуру вольт-амперной характеристики в рамках рассматриваемой модели. Представлены результаты методических расчетов с различными параметрами длины и количества джозефсоновских переходов в стеке ДДП в зависимости от количества задействованных параллельных вычислительных узлов. Расчеты выполнены на многопроцессорных кластерах HybriLIT и ЦИВК Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований (Дубна). На основе полученных численных результатов обсуждается эффективность рассмотренных вариантов распределения вычислений для численного моделирования системы ДДП в параллельном режиме. Показано, что один из предложенных подходов приводит к ускорению вычислений до 9 раз по сравнению с расчетами в однопроцессорном режиме.
Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604Views (last year): 7. Citations: 6 (RSCI).We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.
- Views (last year): 1.
- Views (last year): 2.
- Views (last year): 2.
- Views (last year): 6.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"