All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Алгоритмы сквозного счета для процессов разрушения
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.
Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.
Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.
Ключевые слова: разрушение, повреждаемость, упругость, вязкость, пластичность, термодинамика, определяющие соотношения, разупрочнение, сеточные методы, сквозной счет.
Algorithms of through calculation for damage processes
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666Views (last year): 24.The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.
Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.
The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.
-
Решатель уравнения Больцмана на неструктурированных пространственных сетках
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.
Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.
Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.
В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.
Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.
Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.
Ключевые слова: уравнение Больцмана, эффект Кнудсена, неструктурированная сетка, микронасос, функция распределения, интеграл столкновений, проекционный метод.
The Solver of Boltzmann equation on unstructured spatial grids
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447Views (last year): 13.The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.
In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.
A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.
The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.
The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.
The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.
-
О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.
Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.
On numerical solution of joint inverse geophysical problems with structural constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.
We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.
-
Параллельная реализация решения сопряженной задачи определения внутрибаллистических характеристик двигателей на твердом топливе
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 47-65Представлена физико-математическая постановка сопряженной геометрической и газодинамической задачи моделирования внутрикамерных процессов и расчета основных внутрибаллистических характеристик ракетных двигателей на твердом топливе в осесимметричном приближении. Изложены основополагающие методики и численный алгоритм решения задачи. Отслеживание горящей поверхности топлива осуществлено неявным образом с помощью метода уровней на декартовой структурированной вычислительной сетке. Для расчета параметров течения использованы двумерные уравнения газовой динамики. Ввиду несогласованности границ области с узлами вычислительной сетки, в численных расчетах учтено наличие фиктивных точек, лежащих вне рассматриваемой области, но рядом с границей. Для задания значений параметров течения в фиктивных точках применена обратная процедура Лакса – Вендроффа, заключающаяся в построении экстраполяционного полинома, который учитывает как текущее распределение параметров, так и условия на границе. Численное решение полученной системы уравнений основано на использовании WENO-схем пятого и третьего порядка для дискретной аппроксимации по пространственной координате уравнений метода уровней и газовой динамики соответственно и применении методов Рунге – Кутты, обладающих свойством уменьшения полной вариации, для решения полученных полудискретных уравнений. Изложенный численный алгоритм распараллелен с использованием технологии CUDA и в дальнейшем оптимизирован с учетом особенностей архитектуры графических процессоров.
Программный комплекс использован при расчетах внутрибаллистических характеристик бессоплового двигателя на твердом топливе в течение основного времени работы. На основе полученных численных результатов обсуждается эффективность распараллеливания с использованием технологии CUDA и применения рассмотренных оптимизаций. Показано, что применяемая методика распараллеливания приводит к значительному ускорению по сравнению с использованием центральных процессоров. Представлены распределения основных параметров течения продуктов сгорания в различные промежутки времени. Произведено сравнение полученных результатов квазиодномерного подхода и разработанной численной методики.
Ключевые слова: газовая динамика, ракетные двигатели на твердом топливе, внутренняя баллистика, параллельные вычисления.
Parallel implementation of numerical algorithm of solving coupled internal ballistics modelling problem for solid rocket motors
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 47-65We present a physico-mathematical statement of coupled geometrical and gas dynamics problem of intrachamber processes simulation and calculation of main internal ballistics characteristics of solid rocket motors in axisymmetric approximation. Method and numerical algorithm of solving the problem are described in this paper. We track the propellant burning surface using the level set method. This method allows us to implicitly represent the surface on a fixed Cartesian grid as zero-level of some function. Two-dimensional gas-dynamics equations describe a flow of combustion products in a solid rocket motor. Due to inconsistency of domain boundaries and nodes of computational grid, presence of ghost points lying outside the computational domain is taken into account. For setting the values of flow parameters in ghost points, we use the inverse Lax – Wendroff procedure. We discretize spatial derivatives of level set and gas-dynamics equations with standard WENO schemes of fifth and third-order respectively and time derivatives using total variation diminishing Runge –Kutta methods. We parallelize the presented numerical algorithm using CUDA technology and further optimize it with regard to peculiarities of graphics processors architecture.
Created software package is used for calculating internal ballistics characteristics of nozzleless solid rocket motor during main firing phase. On the base of obtained numerical results, we discuss efficiency of parallelization using CUDA technology and applying considered optimizations. It has been shown that implemented parallelization technique leads to a significant acceleration in comparison with central processes. Distributions of key parameters of combustion products flow in different periods of time have been presented in this paper. We make a comparison of obtained results between quasione-dimensional approach and developed numerical technique.
-
Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.
Ключевые слова: модель расчета матрицы корреспонденций, многостадийная модель, модель равновесного распределения пототоков по путям.
Finding equilibrium in two-stage traffic assignment model
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 365-379Authors describe a two-stage traffic assignment model. It contains of two blocks. The first block consists of a model for calculating a correspondence (demand) matrix, whereas the second block is a traffic assignment model. The first model calculates a matrix of correspondences using a matrix of transport costs (it characterizes the required volumes of movement from one area to another, it is time in this case). To solve this problem, authors propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. The second model describes exactly how the needs for displacement specified by the correspondence matrix are distributed along the possible paths. Knowing the ways of the flows distribution along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage model is a fixed point in the sequence of these two models. In practice the problem of finding a fixed point can be solved by the fixed-point iteration method. Unfortunately, at the moment the issue of convergence and estimations of the convergence rate for this method has not been studied quite thoroughly. In addition, the numerical implementation of the algorithm results in many problems. In particular, if the starting point is incorrect, situations may arise where the algorithm requires extremely large numbers to be computed and exceeds the available memory even on the most modern computers. Therefore the article proposes a method for reducing the problem of finding the equilibrium to the problem of the convex non-smooth optimization. Also a numerical method for solving the obtained optimization problem is proposed. Numerical experiments were carried out for both methods of solving the problem. The authors used data for Vladivostok (for this city information from various sources was processed and collected in a new dataset) and two smaller cities in the USA. It was not possible to achieve convergence by the method of fixed-point iteration, whereas the second model for the same dataset demonstrated convergence rate $k^{-1.67}$.
-
Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.
Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, сверхзвуковой поток, тело квадратной формы, вращение.
Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.
The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.
Keywords: shock wave, Cartesian grid method, Euler equations, supersonic flow, square body, rotation. -
Алгоритм идентификации вихрей по векторам скорости течения на основе простейшей математической модели вихревой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1477-1493Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.
Ключевые слова: вихревые структуры, алгоритм идентификации, системы точечных вихрей, метод градиентного спуска.
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
-
Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.
Ключевые слова: математическое моделирование, гидродинамика, итерационный метод, декомпозиция расчетной области, параллельный алгоритм.
Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.
-
Численное решение квазигидродинамических уравнений на неструктурированных треугольных сетках
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 181-188Предложен метод численного решения квазигидродинамических уравнений на неструктурированных треугольных сетках. В качестве сетки была использована триангуляция Делоне. Система уравнений аппроксимировалась с помощью метода конечных объемов. Граница области аппроксимировалась прямоугольными треугольниками. На основе данного алгоритма была разработана программа и проведена серия тестов, результаты которых показали, что данный алгоритм дает результаты, которые хорошо совпадают с результатами расчетов, выполненных на регулярных сетках.
Numerical solution of quasi-hydrodynamic equations on non-structured triangle mesh
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 181-188Views (last year): 1.A new flow modeling method on unstructured grid was proposed. As a basis system this method used quasi-hydro-dynamic equations. The finite volume method vas used for solving these equations. The Delaunay triangulation was used for constructing mesh. This proposed method was tested in modeling of incompressible flow through a channel with complex profile. The acquired results showed that the proposed method could be used in flow modeling in unstructured grid.
-
Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.
Ключевые слова: нелинейные дифференциальные уравнения, непрерывный аналог метода Ньютона, конечно-разностная аппроксимация.
NINE: computer code for numerical solution of the boundary problems for nonlinear differential equations on the basis of CANM
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 315-324Views (last year): 1. Citations: 1 (RSCI).The computer code NINE (Newtonian Iteration for Nonlinear Equation) for numerical solution of the boundary problems for nonlinear differential equations on the basis of continuous analogue of the Newton method (CANM) is presented. Numerov’s finite-difference appproximation is applied to provide the fourth accuracy order with respect to the discretization stepsize. Algorithms of calculating the Newtonian iterative parameter are discussed. A convergence of iteration process in dependence on choice of the iteration parameter has been studied. Results of numerical investigation of the particle-like solutions of the scalar field equation are given.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"