All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
On the efficiency of the maximum cross section method in radiation transport theory
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582Views (last year): 4. Citations: 2 (RSCI).We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.
-
Applying artificial neural network for the selection of mixed refrigerant by boiling curve
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.
-
Algorithms of parallel computing for radiative-conductive heat transfer problems
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 543-552Views (last year): 2. Citations: 5 (RSCI).The problems of radiative-conductive heat transfer in the scattering layer are considered. They consist in finding the temperature profile and improving the heat transfer from boundaries. For their solution the Monte Carlo method is used. The different approaches of parallelization of proposed algorithm are analyzed.
-
Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308Views (last year): 11. Citations: 2 (RSCI).Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).
-
Numerical simulation of charging processes at ferroelectric diagnostics with scanning electron microscopy techniques
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 107-118Citations: 2 (RSCI).An algorithm of applied problem solving was described to calculate electrical characteristics of electrical field effects in ferroelectrics electron-beam charged. The algorithm was based on implementation of the deterministic model using finite element method as well as taking into account Monte-Carlo simulation results of electron transport. The program application was developed to perform computing experiments.
-
The analysis of player’s behaviour in modified “Sea battle” game
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 817-827Views (last year): 18.The well-known “Sea battle” game is in the focus of the current job. The main goal of the article is to provide modified version of “Sea battle” game and to find optimal players’ strategies in the new rules. Changes were applied to attacking strategies (new option to attack hitting four cells in one shot was added) as well as to the size of the field (sizes of 10 × 10, 20 × 20, 30 × 30 were used) and to the rules of disposal algorithms during the game (new possibility to move the ship off the attacking zone). The game was solved with the use of game theory capabilities: payoff matrices were found for each version of altered rules, for which optimal pure and mixed strategies were discovered. For solving payoff matrices iterative method was used. The simulation was in applying five attacking algorithms and six disposal ones with parameters variation due to the game of players with each other. Attacking algorithms were varied in 100 sets of parameters, disposal algorithms — in 150 sets. Major result is that using such algorithms the modified “Sea battle” game can be solved — that implies the possibility of finding stable pure and mixed strategies of behaviour, which guarantee the sides gaining optimal results in game theory terms. Moreover, influence of modifying the rules of “Sea battle” game is estimated. Comparison with prior authors’ results on this topic was made. Based on matching the payoff matrices with the statistical analysis, completed earlier, it was found out that standard “Sea battle” game could be represented as a special case of game modifications, observed in this article. The job is important not only because of its applications in war area, but in civil areas as well. Use of article’s results could save resources in exploration, provide an advantage in war conflicts, defend devices under devastating impact.
-
Stochastic simulation of chemical reactions in subdiffusion medium
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.
Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.
Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.
-
Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 119-129Views (last year): 11.Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.
-
Tracking on the BESIII CGEM inner detector using deep learning
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.
The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.
In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.
The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.
-
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"