Результаты поиска по 'Newtonian fluid':
Найдено статей: 11
  1. Denisenko V.V., Fortova S.V., Lebedev V.V., Kolokolov I.V.
    Numerical simulation of the backward influence of a polymer additive on the Kolmogorov flow
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1093-1105

    A numerical method is proposed that approximates the equations of the dynamics of a weakly compressible viscous flow in the presence of a polymer component of the flow. The behavior of the flow under the influence of a static external periodic force in a periodic square cell is investigated. The methodology is based on a hybrid approach. The hydrodynamics of the flow is described by a system of Navier – Stokes equations and is numerically approximated by the linearized Godunov method. The polymer field is described by a system of equations for the vector of stretching of polymer molecules $\bf R$, which is numerically approximated by the Kurganov – Tedmor method. The choice of model relationships in the development of a numerical methodology and the selection of modeling parameters made it possible to qualitatively model and study the regime of elastic turbulence at low Reynolds $Re \sim 10^{-1}$. The polymer solution flow dynamics equations differ from the Newtonian fluid dynamics equations by the presence on the right side of the terms describing the forces acting on the polymer component part. The proportionality coefficient $A$ for these terms characterizes the backward influence degree of the polymers number on the flow. The article examines in detail how the flow and its characteristics change depending on the given coefficient. It is shown that with its growth, the flow becomes more chaotic. The flow energy spectra and the spectra of the polymers stretching field are constructed for different values of $A$. In the spectra, an inertial sub-range of the energy cascade is traced for the flow velocity with an indicator $k \sim −4$, for the cascade of polymer molecules stretches with an indicator $−1.6$.

  2. Krivovichev G.V.
    On the computation of viscous fluid flows by the lattice Boltzmann method
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 165-178

    Modification of the lattice Boltzmann method for computation of viscous Newtonian fluid flows is considered. Modified method is based on the splitting of differential operator in Navier–Stokes equation and on the idea of instantaneous Maxwellisation of distribution function. The problems for the system of lattice kinetic equations and for the system of linear diffusion equations are solved while one time step is realized. The efficiency of the method proposed in comparison with the ordinary lattice Boltzmann method is demonstrated on the solution of the problem of planar flow in cavern in wide range of Reynolds number and various grid resolution.

    Citations: 8 (RSCI).
  3. Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and Richtmyer–Meshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the Richtmyer–Meshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the Richtmyer–Meshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Views (last year): 19.
  4. Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  5. Pogorelova E.A.
    Mathematical model of shear stress flows in the vein in the presence of obliterating thrombus
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 169-182

    In this paper a numerical model for blood flow through a venous bifurcation with an obliterating clot is investigated. We studied propagation of perturbations of blood flow velocity and perturbations of pressure inside the vein. The model is built in acoustic (linear) approximation. Computational results reveal conditions for clot resonance oscillation, which can cause its detachment and thromboembolism.

    Views (last year): 1.
  6. Astanina M.S., Sheremet M.A.
    Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107

    Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.

    Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.

    Views (last year): 34.
  7. Gorshkov A.V., Prosviryakov Y.Y.
    Layered B&eacute;nard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Views (last year): 10. Citations: 3 (RSCI).
  8. Tregubov V.P.
    Mathematical modelling of the non-Newtonian blood flow in the aortic arc
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269

    The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.

    Views (last year): 13.
  9. Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

  10. Aksenov A.A., Kalugina M.D., Lobanov A.I., Kashirin V.S.
    Numerical simulation of fluid flow in a blood pump in the FlowVision software package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1025-1038

    A numerical simulation of fluid flow in a blood pump was performed using the FlowVision software package. This test problem, provided by the Center for Devices and Radiological Health of the US. Food and Drug Administration, involved considering fluid flow according to several design modes. At the same time for each case of calculation a certain value of liquid flow rate and rotor speed was set. Necessary data for calculations in the form of exact geometry, flow conditions and fluid characteristics were provided to all research participants, who used different software packages for modeling. Numerical simulations were performed in FlowVision for six calculation modes with the Newtonian fluid and standard $k-\varepsilon$ turbulence model, in addition, the fifth mode with the $k-\omega$ SST turbulence model and with the Caro rheological fluid model were performed. In the first stage of the numerical simulation, the convergence over the mesh was investigated, on the basis of which a final mesh with a number of cells of the order of 6 million was chosen. Due to the large number of cells, in order to accelerate the study, part of the calculations was performed on the Lomonosov-2 cluster. As a result of numerical simulation, we obtained and analyzed values of pressure difference between inlet and outlet of the pump, velocity between rotor blades and in the area of diffuser, and also, we carried out visualization of velocity distribution in certain cross-sections. For all design modes there was compared the pressure difference received numerically with the experimental data, and for the fifth calculation mode there was also compared with the experiment by speed distribution between rotor blades and in the area of diffuser. Data analysis has shown good correlation of calculation results in FlowVision with experimental results and numerical simulation in other software packages. The results obtained in FlowVision for solving the US FDA test suggest that FlowVision software package can be used for solving a wide range of hemodynamic problems.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"