Результаты поиска по 'Y-model':
Найдено статей: 757
  1. Abgaryan K.K., Eliseev S.V., Zhuravlev A.A., Reviznikov D.L.
    High-speed penetration. Discrete-element simulation and experiments
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 937-944

    The paper presents the results of numerical simulation and experimental data on the high-speed penetration of the impactor into the obstacle. In the calculations, a discrete-element model has been used, based on the representation of the impactor and the target by a set of close packed interconnected particles. This class of models finds an increasingly wide application in the problems of high-speed interaction of bodies. In the previous works of the authors, the questions of application of the discrete-element model to the problem of the penetration of spherical impactors into massive targets were considered. On the basis of a comparative analysis of the data of computational and physical experiments, it was found out that for a wide class of high-speed penetration problems, a high accuracy of discrete-element modeling can be achieved using the two-parameter Lennard–Jones potential. The binding energy was identified as a function of the dynamic hardness of materials. It was shown that the use of this approach makes it possible to describe accurately the penetration process in the range of impactor velocities 500–2500 m/c.

    In this paper, we compare the results of discrete-element modeling with experimental data on penetration of high-strength targets of different thickness by steel impactors. The use of computational parallelization technologies on graphic processors in combination with 3D visualization and animation of the results makes it possible to obtain detailed spatio-temporal patterns of the penetration process and compare them with experimental data.

    A comparative analysis of the experimental and calculated data has shown a sufficiently high accuracy of discrete-element modeling for a wide range of target thicknesses: for thin targets pierced with preservation of the integrity of the deformed impactor, for targets of medium thickness, pierced with practically complete fragmentation of the impactor at the exit from the target, and for thick impenetrable targets.

    Views (last year): 13. Citations: 4 (RSCI).
  2. Nikonov E.G., Pavlus M., Popovičová M.
    2D microscopic and macroscopic simulation of water and porous material interaction
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86

    In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.

    Views (last year): 10.
  3. The problem of the combustion of a gas suspension with an inhomogeneous distribution of particles over space occurs exists for the coal dust suspension combustion in combustion chambers and burners. The inhomogeneous distribution of particles in space can significantly affect the combustion velocity of the aerosolve of coal dust. The purpose of the present work is the numerically study the effect of the inhomogeneous distribution of particles and the composition of the coal dust on the combustion velocity of the coal dust in the air.

    The physical and mathematical model of combustion of air-coal dust mixture with an inhomogeneous distribution of coal dust particles over space has been developed. The physical and mathematical formulation of the problem took into account the release of combustible volatile components from the particles upon their heating, the subsequent reaction of volatile components with air, a heterogeneous reaction on the surface of the particles, and the dependence of the thermal conductivity of the gas on temperature.

    A parametric study was made of the effect of mass concentration, the content of volatile and the particle size of coal dust on the burning speed of a suspension of coal dust in the air. It is shown that the burning rate is greater for particles with a lower content of volatile components. The influence of the spatial distribution of particles on the burning rate of the coal-air mixture is analyzed. It is shown that the propagation velocity of the combustion front with respect to the suspension with an inhomogeneous particle distribution is higher than the propagation speed of the combustion front with respect to the suspension with a homogeneous particle distribution.

    Views (last year): 18.
  4. Succi G., Ivanov V.V.
    Comparison of mobile operating systems based on models of growth reliability of the software
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 325-334

    Evaluation of software reliability is an important part of the process of developing modern software. Many studies are aimed at improving models for measuring and predicting the reliability of software products. However, little attention is paid to approaches to comparing existing systems in terms of software reliability. Despite the enormous importance for practice (and for managing software development), a complete and proven comparison methodology does not exist. In this article, we propose a software reliability comparison methodology in which software reliability growth models are widely used. The proposed methodology has the following features: it provides certain level of flexibility and abstraction while keeping objectivity, i.e. providing measurable comparison criteria. Also, given the comparison methodology with a set of SRGMs and evaluation criteria it becomes much easier to disseminate information about reliability of wide range of software systems. The methodology was evaluated on the example of three mobile operating systems with open source: Sailfish, Tizen, CyanogenMod.

    A byproduct of our study is a comparison of the three analyzed Open Source mobile operating systems. The goal of this research is to determine which OS is stronger in terms of reliability. To this end we have performed a GQM analysis and we have identified 3 questions and 8 metrics. Considering the comparison of metrics, it appears that Sailfish is in most case the best performing OS. However, it is also the OS that performs the worst in most cases. On the contrary, Tizen scores the best in 3 cases out of 8, but the worst only in one case out of 8.

    Views (last year): 29.
  5. Kilin A.A., Klenov A.I., Tenenev V.A.
    Controlling the movement of the body using internal masses in a viscous liquid
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460

    This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.

    A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.

    The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.

    Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.

    In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.

    Views (last year): 21. Citations: 2 (RSCI).
  6. Burago N.G., Nikitin I.S.
    Algorithms of through calculation for damage processes
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666

    The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.

    Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.

    The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.

    Views (last year): 24.
  7. Abdelhafez M.A., Tsybulin V.G.
    Modeling of anisotropic convection for the binary fluid in porous medium
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 801-816

    We study an appearance of gravitational convection in a porous medium saturated by the double-diffusive fluid. The rectangle heated from below is considered with anisotropy of media properties. We analyze Darcy – Boussinesq equations for a binary fluid with Soret effect.

    Resulting system for the stream function, the deviation of temperature and concentration is cosymmetric under some additional conditions for the parameters of the problem. It means that the quiescent state (mechanical equilibrium) loses its stability and a continuous family of stationary regimes branches off. We derive explicit formulas for the critical values of the Rayleigh numbers both for temperature and concentration under these conditions of the cosymmetry. It allows to analyze monotonic instability of mechanical equilibrium, the results of corresponding computations are presented.

    A finite-difference discretization of a second-order accuracy is developed with preserving of the cosymmetry of the underlying system. The derived numerical scheme is applied to analyze the stability of mechanical equilibrium.

    The appearance of stationary and nonstationary convective regimes is studied. The neutral stability curves for the mechanical equilibrium are presented. The map for the plane of the Rayleigh numbers (temperature and concentration) are displayed. The impact of the parameters of thermal diffusion on the Rayleigh concentration number is established, at which the oscillating instability precedes the monotonic instability. In the general situation, when the conditions of cosymmetry are not satisfied, the derived formulas of the critical Rayleigh numbers can be used to estimate the thresholds for the convection onset.

    Views (last year): 27.
  8. Astanina M.S., Sheremet M.A.
    Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107

    Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.

    Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.

    Views (last year): 34.
  9. Favorskaya A.V.
    Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 653-673

    Ultrasound examination of material properties is a precision method for determining their elastic and strength properties in connection with the small wavelength formed in the material after impact of a laser beam. In this paper, the wave processes arising during these measurements are considered in detail. It is shown that full-wave numerical modeling allows us to study in detail the types of waves, topological characteristics of their profile, speed of arrival of waves at various points, identification the types of waves whose measurements are most optimal for examining a sample made of a specific material of a particular shape, and to develop measurement procedures.

    To carry out full-wave modeling, a grid-characteristic method on structured grids was used in this work and a hyperbolic system of equations that describes the propagation of elastic waves in the material of the thin plate under consideration on a specific example of a ratio of thickness to width of 1:10 was solved.

    To simulate an elastic front that arose in the plate due to a laser beam, a model of the corresponding initial conditions was proposed. A comparison of the wave effects that arise during its use in the case of a point source and with the data of physical experiments on the propagation of laser ultrasound in metal plates was made.

    A study was made on the basis of which the characteristic topological features of the wave processes under consideration were identified and revealed. The main types of elastic waves arising due to a laser beam are investigated, the possibility of their use for studying the properties of materials is analyzed. A method based on the analysis of multiple waves is proposed. The proposed method for studying the properties of a plate with the help of multiple waves on synthetic data was tested, and it showed good results.

    It should be noted that most of the studies of multiple waves are aimed at developing methods for their suppression. Multiple waves are not used to process the results of ultrasound studies due to the complexity of their detection in the recorded data of a physical experiment.

    Due to the use of full wave modeling and analysis of spatial dynamic wave processes, multiple waves are considered in detail in this work and it is proposed to divide materials into three classes, which allows using multiple waves to obtain information about the material of the plate.

    The main results of the work are the developed problem statements for the numerical simulation of the study of plates of a finite thickness by laser ultrasound; the revealed features of the wave phenomena arising in plates of a finite thickness; the developed method for studying the properties of the plate on the basis of multiple waves; the developed classification of materials.

    The results of the studies presented in this paper may be of interest not only for developments in the field of ultrasonic non-destructive testing, but also in the field of seismic exploration of the earth's interior, since the proposed approach can be extended to more complex cases of heterogeneous media and applied in geophysics.

    Views (last year): 3.
  10. Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"