All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Численное моделирование и параллельные вычисления процессов тепломассопереноса при физико-химических воздействиях на неоднородный нефтяной пласт, вскрытый системой скважин
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 319-328В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.
Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.
Ключевые слова: компьютерное моделирование, численные методы, параллельные алгоритмы, программные комплексы, многофазные потоки, добывающие и нагнетательные скважины, электроцентробежные насосы, неоднородный нефтяной пласт, гидрогелевое заводнение.
Numerical modeling and parallel computations of heat and mass transfer during physical and chemical actions on the non-uniform oil reservoir developing by system of wells
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 319-328The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.
The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность.
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence. -
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.
Ключевые слова: системы нелинейных уравнений, нелинейная регрессия, метод Гаусса–Ньютона, алгоритм Левенберга–Марквардта, методы доверительной области, невыпуклая оптимизация, неточное проксимальное отображение, неточный оракул, условие Поляка–Лоясиевича, оценка сложности.
Modified Gauss–Newton method for solving a smooth system of nonlinear equations
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.
-
Численное моделирование течения в двухмерном плоском диффузоре на основе двухжидкостной модели турбулентности
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1149-1160В статье представлены результаты численного исследования структуры течения в двухмерном плоском диффузоре. Особенностью диффузоров является то, что в них наблюдается сложное анизотропное турбулентное течение, которое возникает за счет рециркуляционных потоков. Турбулентные модели RANS, в основе которых лежит гипотеза Буссинеска, не способны описывать с достаточной точностью течение в диффузорах. Потому что гипотеза Буссинеска основана на изотропной турбулентности. Поэтому для расчета анизотропных турбулентных течений привлекаются модели, в которых не используется данная гипотеза. Одним из таких направлений в моделировании турбулентности являются методы рейнольдсовых напряжений. Эти методы сложны и требуют довольно больших вычислительных ресурсов. В работе для исследования течения в плоском диффузоре использована сравнительно недавно разработанная двухжидкостная модель турбулентности. Данная модель разработана на основе двухжидкостного подхода к проблеме турбулентности. В отличие от подхода Рейнольдса двухжидкостный подход позволяет получить замкнутую систему уравнений турбулентности с использованием динамики двух жидкостей. Следовательно, если в RANS-моделях для замыкания используются эмпирические уравнения, то в двухжидкостной модели используемые уравненияя вляются точными уравнениями динамики. Одно из главных преимуществ двухжидкостной модели заключаетсяв том, что она способна описывать сложные анизотропные турбулентные течения. В работе полученные численные результаты для профилей продольной скорости, турбулентных напряжений в различных сечениях канала, а также коэффициента трениясравнив аются с известными экспериментальными данными. Для демонстрации достоинства использованной модели турбулентности представлены и численные результаты метода рейнольдсовых напряжений EARSM. Для численной реализации систем уравнений двухжидкостной модели использована нестационарная система уравнений, решение которой асимптотически приближалось к стационарному решению. Дляэтой цели использована конечно-разностная схема, где вязкостные члены аппроксимировались центральной разностью неявным образом, а для конвективных членов использована явная схема против потока второго порядка точности. Результаты получены для числа Рейнольдса Re = 20 000. Показано, что двухжидкостная модель, несмотря на использование равномерной расчетной сетки без сгущенияо коло стенок, способна давать более точное решение, чем достаточно сложный метод рейнольдсовых напряжений с большим разрешением расчетных сеток.
Ключевые слова: уравнения Навье – Стокса, диффузор, отрывное течение, двухжидкостная модель, метод контрольного объема, турбулентные напряжения.
Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1149-1160The article presents the results of a numerical study of the flow structure in a two-dimensional flat diffuser. A feature of diffusers is that they have a complex anisotropic turbulent flow, which occurs due to recirculation flows. The turbulent RANS models, which are based on the Boussinesq hypothesis, are not able to describe the flow in diffusers with sufficient accuracy. Because the Boussinesq hypothesis is based on isotropic turbulence. Therefore, to calculate anisotropic turbulent flows, models are used that do not use this hypothesis. One of such directions in turbulence modeling is the methods of Reynolds stresses. These methods are complex and require rather large computational resources. In this work, a relatively recently developed two-fluid turbulence model was used to study the flow in a flat diffuser. This model is developed on the basis of a two-fluid approach to the problem of turbulence. In contrast to the Reynolds approach, the two-fluid approach allows one to obtain a closed system of turbulence equations using the dynamics of two fluids. Consequently, if empirical equations are used in RANS models for closure, then in the two-fluid model the equations used are exact equations of dynamics. One of the main advantages of the two-fluid model is that it is capable of describing complex anisotropic turbulent flows. In this work, the obtained numerical results for the profiles of the longitudinal velocity, turbulent stresses in various sections of the channel, as well as the friction coefficient are compared with the known experimental data. To demonstrate the advantages of the used turbulence model, the numerical results of the Reynolds stress method EARSM are also presented. For the numerical implementation of the systems of equations of the two-fluid model, a non-stationary system of equations was used, the solution of which asymptotically approached the stationary solution. For this purpose, a finite-difference scheme was used, where the viscosity terms were approximated by the central difference implicitly, and for the convective terms, an explicit scheme against the flow of the second order of accuracy was used. The results are obtained for the Reynolds number Re = 20 000. It is shown that the two-fluid model, despite the use of a uniform computational grid without thickening near the walls, is capable of giving a more accurate solution than the rather complex Reynolds stress method with a high resolution of computational grids.
-
Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.
Ключевые слова: жесткопластические среды, внешние нагрузки, материалы с памятью формы, вариационные принципы, пластичность при различных температурах, законытер модинамики, обобщенные решения.
Deformation of shape memory rigid-plastic bodies under variable external loads and temperatures
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 63-77Under increasing loading and at a constant temperature shape memory solids become deformed in an ideal elastic plastic way as other metals, and the maximum elastic strains are much less than the ultimate plastic ones. The shape is restored at the elevated temperature and low stress level. Phenomenologically, the «reverse» deformation is equivalent to the change in shape under active loading up to sign. Plastic deformation plays a leading role in a non-elastic process; thus, the mechanical behavior should be analyzed within the ideal rigid-plastic model with two loading surfaces. In this model two physical states of the material correspond to the loading surfaces: plastic flow under high stresses and melting at a relatively low temperature. The second section poses a problem of deformation of rigid-plastic bodies at the constant temperature in two forms: as a principle of virtual velocities with the von Mises yield condition and as a requirement of the minimum dissipative functionаl. The equivalence of the accepted definitions and the existence of the generalized solutions is proved for both principles. The third section studies the rigid-plastic model of the solid at the variable temperature with two loading surfaces. For the assumed model two optimal principles are defined that link the external loads and the displacement velocities of the solid points both under active loading and in the process of shape restoration under heating. The existence of generalized velocities is proved for the wide variety of 3D domains. The connection between the variational principles and the variable temperature is ensured by inclusion of the first and second principles of thermodynamics in the calculation model. It is essential that only the phenomenological description of the phenomenon is used in the proving process. The austenite-tomartensite transformations of alloys, which are often the key elements in explanations of the mechanical behavior of shape memory materials, are not used here. The fourth section includes the definition of the shape memory materials as solids with two loading surfaces and proves the existence of solutions within the accepted restrictions. The adequacy of the model and the experiments on deformation of shape memory materials is demonstrated. In the conclusion mathematical problems that could be interesting for future research are defined.
-
Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.
Ключевые слова: компьютерное моделирование, уравнения газовой динамики с химическими реакциями, расщепление по физическим процессам, радикально-цепные реакции, лазерное излучение, пиролиз этана.
The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.
-
Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.
В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.
Ключевые слова: конус Тейлора, схема МакКормака, слабосжимаемые жидкости, диэлектрическая проницаемость.
Development of the water – oil interface instability in a vertical electric field
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 633-645The presence of a contact boundary between water and transformer oil greatly reduces the electrical strength of the oil phase. The presence of an electric field leads to varying degrees of polarization at the interface and the appearance of a force acting on a liquid with a higher dielectric constant (water) in the direction of a liquid with a lower dielectric constant (oil). This leads to the contact surface instability development. Instability as a result of its development leads to a stream of water being drawn into oil volume and a violation of the insulating gap. In this work, we experimentally and numerically study electrohydrodynamic instability at the phase boundary between electrically weakly conductive water and transformer oil in a highly inhomogeneous electric field directed perpendicular to the contact boundary. The results of a full-scale and numerical experiment of studying of the electrohydrodynamic instability development in a strong electric field at the interface between water and transformer oil are presented. The system consists of a spherical electrode with a radius of 3.5 mm, placed in water with a conductivity of 5 $\mu S/cm$, and a thin blade electrode 0.1 mm thick, placed in transformer oil of the GK brand. The contact boundary passes at the same distance from the nearest points of the electrodes, equal to 3 mm. The work shows that at a certain electric field strength, the cone-shaped structure of water grows towards the electrode immersed in transformer oil. A numerical correspondence was obtained for both the shape of the resulting water structure (cone) during the entire growth time and the size measured from its top to the level of the initial contact boundary of phase separation. The dynamics of this structure growth has been studied. Both in numerical calculations and in experiment, it was found that the size of the resulting cone along the electrode connection line depends linearly on time.
-
Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.
Ключевые слова: мобильный робот, водный робот, моделирование движения, экспериментальные исследования.
The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.
-
Численное исследование фотовозбужденных поляронных состояний в воде
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 253-261Разработан метод и комплекс программ для численного моделирования процесса формирования поляронных состояний в конденсированных средах. Проведено численное исследование этого процесса для водной среды при воздействии лазерного облучения в ультрафиолетовом диапазоне. Показано, что в рамках предложенного подхода удается численно воспроизвести экспериментальные данные по формированию гидратированных электронов. Представлена схема численного решения системы нелинейных дифференциальных уравнений в частных производных, описывающих динамическую модельпо лярона. Программная реализация выполнена с использованием технологии параллельного программирования MPI. Обсуждаются численные результаты в сравнении с экспериментальными данными и теоретическими оценками.
Ключевые слова: поляронное состояние, гидратированный (сольватированный) электрон, конечно-разностные схемы, параллельная реализация.
Numerical investigation of photoexcited polaron states in water
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261Citations: 1 (RSCI).A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"