All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Correlation and realization of quasi-Newton methods of absolute optimization
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78Views (last year): 7. Citations: 5 (RSCI).Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.
-
Quantitative assessment of seismic risk and energy concepts of earthquake engineering
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 61-76Currently, earthquake-resistant design of buildings based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using elastic response spectra (linear-spectral method) that connects the law of motion of the soil with the absolute acceleration of the model in a nonlinear oscillator.
This approach does not directly take into account either the influence of the duration of strong motion or the plastic behavior of the structure. Frequency content and duration of ground vibrations directly affect the energy received by the building and causing damage to its elements. Unlike power or kinematic calculation of the seismic effect on the structure can be interpreted without considering separately the forces and displacements and to provide, as the product of both variables, i.e., the work or input energy (maximum energy that can be purchased building to the earthquake).
With the energy approach of seismic design, it is necessary to evaluate the input seismic energy in the structure and its distribution among various structural components.
The article provides substantiation of the energy approach in the design of earthquake-resistant buildings and structures instead of the currently used method based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using spectra of the reaction.
Noted that interest in the use of energy concepts in earthquake-resistant design began with the works of Housner, which provided the seismic force in the form of the input seismic energy, using the range of speeds, and suggested that the damage in elastic-plastic system and elastic system causes one and the same input seismic energy.
The indices of the determination of the input energy of the earthquake, proposed by various authors, are given in this paper. It is shown that modern approaches to ensuring seismic stability of structures, based on the representation of the earthquake effect as a static equivalent force, do not adequately describe the behavior of the system during an earthquake.
In this paper, based on quantitative estimates of seismic risk analyzes developed in the NRU MSUCE Standard Organization (STO) “Seismic resistance structures. The main design provisions”. In the developed document a step forward with respect to the optimal design of earthquake-resistant structures.
The proposed concept of using the achievements of modern methods of calculation of buildings and structures on seismic effects, which are harmonized with the Eurocodes and are not contrary to the system of national regulations.
Keywords: the earthquake resistance of buildings, the energy method, earthquake-resistant construction, spectra response, the input earthquake energy, earthquake recurrence period, seismic risk, anti-seismic measures, conceptual design, two-tiered calculation, seismic resistance criteria, nonlinear static and nonlinear dynamic calculation method.Views (last year): 21. -
An implementation of a parallel global minimum search algorithm with an application to the ReaxFF molecular dynamic force field parameters optimization
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 745-752Views (last year): 1. Citations: 1 (RSCI).Molecular dynamic methods that use ReaxFF force field allow one to obtain sufficiently good results in simulating large multicomponent chemically reactive systems. Here is represented an algorithm of searching optimal parameters of molecular-dynamic force field ReaxFF for arbitrary chemical systems and its implementation. The method is based on the multidimensional technique of global minimum search suggested by R.G. Strongin. It has good scalability useful for running on distributed parallel computers.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"