Результаты поиска по 'adaptability':
Найдено статей: 67
  1. Podlipnova I.V., Persiianov M.I., Shvetsov V.I., Gasnikova E.V.
    Transport modeling: averaging price matrices
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 317-327

    This paper considers various approaches to averaging the generalized travel costs calculated for different modes of travel in the transportation network. The mode of transportation is understood to mean both the mode of transport, for example, a car or public transport, and movement without the use of transport, for example, on foot. The task of calculating the trip matrices includes the task of calculating the total matrices, in other words, estimating the total demand for movements by all modes, as well as the task of splitting the matrices according to the mode, also called modal splitting. To calculate trip matrices, gravitational, entropy and other models are used, in which the probability of movement between zones is estimated based on a certain measure of the distance of these zones from each other. Usually, the generalized cost of moving along the optimal path between zones is used as a distance measure. However, the generalized cost of movement differs for different modes of movement. When calculating the total trip matrices, it becomes necessary to average the generalized costs by modes of movement. The averaging procedure is subject to the natural requirement of monotonicity in all arguments. This requirement is not met by some commonly used averaging methods, for example, averaging with weights. The problem of modal splitting is solved by applying the methods of discrete choice theory. In particular, within the framework of the theory of discrete choice, correct methods have been developed for averaging the utility of alternatives that are monotonic in all arguments. The authors propose some adaptation of the methods of the theory of discrete choice for application to the calculation of the average cost of movements in the gravitational and entropy models. The transfer of averaging formulas from the context of the modal splitting model to the trip matrix calculation model requires the introduction of new parameters and the derivation of conditions for the possible value of these parameters, which was done in this article. The issues of recalibration of the gravitational function, which is necessary when switching to a new averaging method, if the existing function is calibrated taking into account the use of the weighted average cost, were also considered. The proposed methods were implemented on the example of a small fragment of the transport network. The results of calculations are presented, demonstrating the advantage of the proposed methods.

  2. Tsviashchenko E.V.
    Adequacy analysis the model of strong replicas agreement in NoSQL databases
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 101-112

    In this article the model of strong replicas agreement was analyzed. The process of preparing and conducting the nature experiment in the cloud in order to proof the model adequacy was described. Specifications of the program for implementation of database access to the NoSQL system and the program for handling journals were presented. One part of obtained experiments results was used for model adaptation, another part — for adequacy evaluating. The adequacy analysis is presented.

    Views (last year): 2.
  3. Tumanyan A.G., Bartsev S.I.
    Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950

    In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.

    Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).

    Views (last year): 6. Citations: 2 (RSCI).
  4. Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Views (last year): 8. Citations: 3 (RSCI).
  5. Malygina N.V., Surkov P.G.
    On the modeling of water obstacles overcoming by Rangifer tarandus L
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910

    Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.

  6. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  7. Dvurechensky P.E.
    A gradient method with inexact oracle for composite nonconvex optimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334

    In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.

  8. Korenkov V.V., Kutovskiy N.A., Semenov R.N.
    An experience of the application software packages adaptation for running in grid environments
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 339-344

    This article describes an experience of LIT JINR team in application software packages adaptation for running in different grid environments. Peculiarities of the applications “gridification” depending on their possible launch modes and a type of the matching computational resources are given. The particular applications and grid environments which applications are adopted for are listed.

    Views (last year): 1. Citations: 1 (RSCI).
  9. Ososkov G.A., Bakina O.V., Baranov D.A., Goncharov P.V., Denisenko I.I., Zhemchugov A.S., Nefedov Y.A., Nechaevskiy A.V., Nikolskaya A.N., Shchavelev E.M., Wang L., Sun S., Zhang Y.
    Tracking on the BESIII CGEM inner detector using deep learning
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381

    The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.

    The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.

    In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.

    The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.

  10. Rusyak I.G., Tenenev V.A.
    On the issue of numerical modeling of internal ballistics for a tubular charge in a spatial setting
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 993-1010

    There are conditions of uneven combustion for tubular powder elements of large elongation used in artillery propelling charges. Here it is necessary to consider in parallel the processes of combustion and movement of powder gases inside and outside the channels of the powder tubes. Without this, it is impossible to adequately formulate and solve the problems of ignition, erosive combustion and stress-strain state of tubular powder elements in the shot process. The paper presents a physical and mathematical formulation of the main problem of the internal ballistics of an artillery shot for a charge consisting of a set of powder tubes. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. The end and cross-sectional areas of the channel of such a charge (equivalent tube) are equal to the sum of the areas of the ends and cross-sections of the channels of the powder tubes, respectively. The combustion surface of the channel is equal to the sum of the inner surfaces of the tubes in the bundle. The outer combustion surface of the equivalent tube is equal to the sum of the outer surfaces of the tubes in the bundle. It is assumed that the equivalent tube moves along the axis of the bore. The speed of motion of an equivalent tubular charge and its current position are determined from Newton’s second law. To calculate the flow parameters, we used two-dimensional axisymmetric equations of gas dynamics, for the solution of which an axisymmetric orthogonalized difference mesh is constructed, which adapts to the flow conditions. When the tube moves and burns, the difference grid is rearranged taking into account the changing regions of integration. The control volume method is used for the numerical solution of the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov problem of decay for an arbitrary discontinuity. The developed technique was used to calculate the internal ballistics parameters of an artillery shot. This approach is considered for the first time and allows a new approach to the design of tubular artillery charges, since it allows obtaining the necessary information in the form of fields of velocity and pressure of powder gases for calculating the process of gradual ignition, unsteady erosive combustion, stress-strain state and strength of powder elements during the shot. The time dependences of the parameters of the internal ballistics process and the distribution of the main parameters of the flow of combustion products at different times are presented.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"