Результаты поиска по 'adaptive method':
Найдено статей: 43
  1. Melman A.S., Evsutin O.O.
    Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 197-210

    Data hiding in digital images is a promising direction of cybersecurity. Digital steganography methods provide imperceptible transmission of secret data over an open communication channel. The information embedding efficiency depends on the embedding imperceptibility, capacity, and robustness. These quality criteria are mutually inverse, and the improvement of one indicator usually leads to the deterioration of the others. A balance between them can be achieved using metaheuristic optimization. Metaheuristics are a class of optimization algorithms that find an optimal, or close to an optimal solution for a variety of problems, including those that are difficult to formalize, by simulating various natural processes, for example, the evolution of species or the behavior of animals. In this study, we propose an approach to data hiding in the hybrid spatial-frequency domain of digital images based on metaheuristic optimization. Changing a block of image pixels according to some change matrix is considered as an embedding operation. We select the change matrix adaptively for each block using metaheuristic optimization algorithms. In this study, we compare the performance of three metaheuristics such as genetic algorithm, particle swarm optimization, and differential evolution to find the best change matrix. Experimental results showed that the proposed approach provides high imperceptibility of embedding, high capacity, and error-free extraction of embedded information. At the same time, storage of change matrices for each block is not required for further data extraction. This improves user experience and reduces the chance of an attacker discovering the steganographic attachment. Metaheuristics provided an increase in imperceptibility indicator, estimated by the PSNR metric, and the capacity of the previous algorithm for embedding information into the coefficients of the discrete cosine transform using the QIM method [Evsutin, Melman, Meshcheryakov, 2021] by 26.02% and 30.18%, respectively, for the genetic algorithm, 26.01% and 19.39% for particle swarm optimization, 27.30% and 28.73% for differential evolution.

  2. Tupitsa N.K.
    On accelerated adaptive methods and their modifications for alternating minimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515

    In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.

    The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.

    As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.

    We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.

    Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.

  3. Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"