Результаты поиска по 'amino acids':
Найдено статей: 6
  1. Glyakina A.V., Galzitskaya O.V., Balabaev N.K.
    Investigation of the mechanical properties of immunoglobulinbinding domains of proteins L and G using the molecular dynamics simulations
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 73-81

    Mechanical unfolding of two identical in structure but differ in their amino acid sequences immunoglobulinbinding domains of proteins L and G under the action of external forces have been investigating  using the method of molecular dynamics with explicit model of solvent. Mechanical characteristics of these proteins have been calculated. It has been shown that in the way of the mechanical unfolding of both proteins appear intermediate states. Calculations revealed three significantly different ways of mechanical unfolding of proteins L and G.

    Citations: 1 (RSCI).
  2. Kondratyev M.S., Kabanov A.V., Komarov V.M.
    Modeling of helix formation in peptides containing aspartic and glutamic residues
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 83-90

    In present work we used the methods of molecular dynamics simulations and quantum chemistry to study the concept, according to which aspartic and glutamic residues play a key role in initiation of helix formation in oligopeptides. It has been shown, that the first turn of the alpha-helix can be organized from various amino acid sequences with Asp and Glu residues on the N-terminus. Thermodynamic properties of such a process were analyzed. The obtained results do not interfere with known experimental and statistical data and they substantially elaborate present views on the processes of early peptide folding stages.

    Views (last year): 2. Citations: 4 (RSCI).
  3. Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  4. Fedorov V.A., Khruschev S.S., Kovalenko I.B.
    Analysis of Brownian and molecular dynamics trajectories of to reveal the mechanisms of protein-protein interactions
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 723-738

    The paper proposes a set of fairly simple analysis algorithms that can be used to analyze a wide range of protein-protein interactions. In this work, we jointly use the methods of Brownian and molecular dynamics to describe the process of formation of a complex of plastocyanin and cytochrome f proteins in higher plants. In the diffusion-collision complex, two clusters of structures were revealed, the transition between which is possible with the preservation of the position of the center of mass of the molecules and is accompanied only by a rotation of plastocyanin by 134 degrees. The first and second clusters of structures of collisional complexes differ in that in the first cluster with a positively charged region near the small domain of cytochrome f, only the “lower” plastocyanin region contacts, while in the second cluster, both negatively charged regions. The “upper” negatively charged region of plastocyanin in the first cluster is in contact with the amino acid residue of lysine K122. When the final complex is formed, the plastocyanin molecule rotates by 69 degrees around an axis passing through both areas of electrostatic contact. With this rotation, water is displaced from the regions located near the cofactors of the molecules and formed by hydrophobic amino acid residues. This leads to the appearance of hydrophobic contacts, a decrease in the distance between the cofactors to a distance of less than 1.5 nm, and further stabilization of the complex in a position suitable for electron transfer. Characteristics such as contact matrices, rotation axes during the transition between states, and graphs of changes in the number of contacts during the modeling process make it possible to determine the key amino acid residues involved in the formation of the complex and to reveal the physicochemical mechanisms underlying this process.

  5. Guleenkova V.D., Ershova D.M., Tsaturyan A.K., Koubassova N.A.
    Molecular dynamics study of the effect of mutations in the tropomyosin molecule on the properties of thin filaments of the heart muscle
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 513-524

    Muscle contraction is controlled by Ca2+ ions via regulatory proteins, troponin and tropomyosin, associated with thin actin filaments in sarcomeres. Depending on the Ca2+ concentration, the thin filament rearranges so that tropomyosin moves along its surface, opening or closing access to actin for the motor domains of myosin molecules, and causing contraction or relaxation, respectively. Numerous point amino acid substitutions in tropomyosin are known, leading to genetic pathologies — myo- and cardiomyopathies caused by changes in the structural and functional properties of the thin filament. The results of molecular dynamics modeling of a fragment of a thin filament of cardiac muscle sarcomeres formed by fibrillar actin and wildtype tropomyosin or with amino acid substitutions: the double stabilizing substitution D137L/G126R and the cardiomyopathic substitution S215L are presented. For numerical calculations, we used a new model of a thin filament fragment containing 26 actin monomers and 4 tropomyosin dimers, with a refined structure of the region of overlap of neighboring tropomyosin molecules in each of the two tropomyosin strands. The simulation results showed that tropomyosin significantly increases the bending stiffness of the thin filament, as previously found experimentally. The double stabilizing replacement D137L/G126R leads to a further increase in this rigidity, and the replacement S215L, on the contrary, leads to its decrease, which also corresponds to experimental data. At the same time, these substitutions have different effects on the angular mobility of the actin helix and only slightly modulate the angular mobility of tropomyosin cables relative to the actin helix and the population of hydrogen bonds between negatively charged tropomyosin residues and positively charged actin residues. The results of the verification of the new model demonstrate that its quality is sufficient for the numerical study of the effect of single amino acid substitutions on the structure and dynamics of thin filaments and study the effects leading to dysregulation of muscle contraction. This model can be used as a useful tool for elucidating the molecular mechanisms of some genetic diseases and assessing the pathogenicity of newly discovered genetic variants.

  6. Lihachev I.V., Galzitskaya O.V., Balabaev N.K.
    Investigation of C-Cadherin mechanical properties by Molecular Dynamics
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735

    The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.

    Views (last year): 5.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"