Результаты поиска по 'analysis of the correctness of approximate solutions':
Найдено статей: 4
  1. This work is devoted to development of an algorithm for numerical integration of differential equations potentially-streaming method simulation of non-equilibrium processes. This method was developed by the author in his earlier published works. In this paper, consideration is limited to systems with lumped parameters. Also previously developed method for analyzing the correctness of the author of the approximate solution of the system potentially-streaming equations for systems in lumped parameters. The purpose of this article is to combine this technique with modern numerical methods for integrating systems of ordinary differential equations and the development of methods of numerical integration of systems of equations potentially-streaming method that allows to guarantee the correctness of the approximate solution.

    Views (last year): 4. Citations: 3 (RSCI).
  2. Fomin A.A., Fomina L.N.
    On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880

    In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.

    The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.

    Views (last year): 15. Citations: 1 (RSCI).
  3. Grenkin G.V.
    On the uniqueness of identification of reaction rate parameters in a combustion model
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1469-1476

    A model of combustion of premixed mixture of gases with one global chemical reaction is considered, the model includes equations of the second order for temperature of mixture and concentrations of fuel and oxidizer, and the right-hand sides of these equations contain the reaction rate function. This function depends on five unknown parameters of the global reaction and serves as approximation to multistep reaction mechanism. The model is reduced, after replacement of variables, to one equation of the second order for temperature of mixture that transforms to a first-order equation for temperature derivative depending on temperature that contains a parameter of flame propagation velocity. Thus, for computing the parameter of burning velocity, one has to solve Dirichlet problem for first-order equation, and after that a model dependence of burning velocity on mixture equivalence ratio at specified reaction rate parameters will be obtained. Given the experimental data of dependence of burning velocity on mixture equivalence ratio, the problem of optimal selection of reaction rate parameters is stated, based on minimization of the mean square deviation of model values of burning velocity on experimental ones. The aim of our study is analysis of uniqueness of this problem solution. To this end, we apply computational experiment during which the problem of global search of optima is solved using multistart of gradient descent. The computational experiment clarifies that the inverse problem in this statement is underdetermined, and every time, when running gradient descent from a selected starting point, it converges to a new limit point. The structure of the set of limit points in the five-dimensional space is analyzed, and it is shown that this set can be described with three linear equations. Therefore, it might be incorrect to tabulate all five parameters of reaction rate based on just one match criterion between model and experimental data of flame propagation velocity. The conclusion of our study is that in order to tabulate reaction rate parameters correctly, it is necessary to specify the values of two of them, based on additional optimality criteria.

  4. Sadin D.V.
    Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772

    We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.

    The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.

    Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"