Результаты поиска по 'analytical-numerical method':
Найдено статей: 55
  1. Vasiliev I.A., Dubinya N.V., Tikhotskiy S.A., Nachev V.A., Alexeev D.A.
    Numerical model of jack-up rig’s mechanical behavior under seismic loading
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871

    The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.

  2. Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

  3. Vasyukov A.V., Beklemysheva K.A., Onuchin E.S., Tovarnova N.A., Petrov I.B.
    Calculation of transverse wave speed in preloaded fibres under an impact
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 887-897

    The paper considers the problem of transverse impact on a thin preloaded fiber. The commonly accepted theory of transverse impact on a thin fiber is based on the classical works of Rakhmatulin and Smith. The simple relations obtained from the Rakhmatulin – Smith theory are widely used in engineering practice. However, there are numerous evidences that experimental results may differ significantly from estimations based on these relations. A brief overview of the factors that cause the differences is given in this article.

    This paper focuses on the shear wave velocity, as it is the only feature that can be directly observed and measured using high-speed cameras or similar methods. The influence of the fiber preload on the wave speed is considered. This factor is important, since it inevitably arises in the experimental results. The reliable fastening and precise positioning of the fiber during the experiments requires its preload. This work shows that the preload significantly affects the shear wave velocity in the impacted fiber.

    Numerical calculations were performed for Kevlar 29 and Spectra 1000 yarns. Shear wave velocities are obtained for different levels of initial tension. A direct comparison of numerical results and analytical estimations with experimental data is presented. The speed of the transverse wave in free and preloaded fibers differed by a factor of two for the setup parameters considered. This fact demonstrates that measurements based on high-speed imaging and analysis of the observed shear waves should take into account the preload of the fibers.

    This paper proposes a formula for a quick estimation of the shear wave velocity in preloaded fibers. The formula is obtained from the basic relations of the Rakhmatulin – Smith theory under the assumption of a large initial deformation of the fiber. The formula can give significantly better results than the classical approximation, this fact is demonstrated using the data for preloaded Kevlar 29 and Spectra 1000. The paper also shows that direct numerical calculation has better corresponding with the experimental data than any of the considered analytical estimations.

  4. Golubev V.I., Shevchenko A.V., Petrov I.B.
    Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910

    The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.

    In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.

  5. Reshitko M.A., Usov A.B., Ougolnitsky G.A.
    Water consumption control model for regions with low water availability
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1395-1410

    This paper considers the problem of water consumption in the regions of Russia with low water availability. We provide a review of the existing methods to control quality and quantity of water resources at different scales — from households to worldwide. The paper itself considers regions with low “water availability” parameter which is amount of water per person per year. Special attention is paid to the regions, where this parameter is low because of natural features of the region, not because of high population. In such regions many resources are spend on water processing infrastructure to store water and transport water from other regions. In such regions the main water consumers are industry and agriculture.

    We propose dynamic two-level hierarchical model which matches water consumption of a region with its gross regional product. On the top level there is a regional administration (supervisor) and on the lower level there are region enterprises (agents). The supervisor sets fees for water consumption. We study the model with Pontryagin’s maximum principle and provide agents’s optimal control in analytical form. For the supervisor’s control we provide numerical algorithm. The model has six free coefficients, which can be chosen so the model represents a particular region. We use data from Russia Federal State Statistics Service for identification process of a model. For numerical analysis we use trust region reflective algorithms. We provide calculations for a few regions with low water availability. It is shown that it is possible to reduce water consumption of a region more than by 20% while gross regional product drop is less than 10%.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"