All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The 3rd BRICS Mathematics Conference
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016 -
Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.
-
Modern ways to overcome neural networks catastrophic forgetting and empirical investigations on their structural issues
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 45-56This paper presents the results of experimental validation of some structural issues concerning the practical use of methods to overcome catastrophic forgetting of neural networks. A comparison of current effective methods like EWC (Elastic Weight Consolidation) and WVA (Weight Velocity Attenuation) is made and their advantages and disadvantages are considered. It is shown that EWC is better for tasks where full retention of learned skills is required on all the tasks in the training queue, while WVA is more suitable for sequential tasks with very limited computational resources, or when reuse of representations and acceleration of learning from task to task is required rather than exact retention of the skills. The attenuation of the WVA method must be applied to the optimization step, i. e. to the increments of neural network weights, rather than to the loss function gradient itself, and this is true for any gradient optimization method except the simplest stochastic gradient descent (SGD). The choice of the optimal weights attenuation function between the hyperbolic function and the exponent is considered. It is shown that hyperbolic attenuation is preferable because, despite comparable quality at optimal values of the hyperparameter of the WVA method, it is more robust to hyperparameter deviations from the optimal value (this hyperparameter in the WVA method provides a balance between preservation of old skills and learning a new skill). Empirical observations are presented that support the hypothesis that the optimal value of this hyperparameter does not depend on the number of tasks in the sequential learning queue. And, consequently, this hyperparameter can be picked up on a small number of tasks and used on longer sequences.
-
Applying artificial neural network for the selection of mixed refrigerant by boiling curve
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.
-
Distributed computing model for the organization of a software environment that provides management of intelligent building automation systems
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 557-570The present article describes the authors’ model of construction of the distributed computer network and realization in it of the distributed calculations which are carried out within the limits of the software-information environment providing management of the information, automated and engineering systems of intellectual buildings. The presented model is based on the functional approach with encapsulation of the non-determined calculations and various side effects in monadic calculations that allows to apply all advantages of functional programming to a choice and execution of scenarios of management of various aspects of life activity of buildings and constructions. Besides, the described model can be used together with process of intellectualization of technical and sociotechnical systems for increase of level of independence of decision-making on management of values of parameters of the internal environment of a building, and also for realization of methods of adaptive management, in particular application of various techniques and approaches of an artificial intellect. An important part of the model is a directed acyclic graph, which is an extension of the blockchain with the ability to categorically reduce the cost of transactions taking into account the execution of smart contracts. According to the authors it will allow one to realize new technologies and methods — the distributed register on the basis of the directed acyclic graph, calculation on edge and the hybrid scheme of construction of artificial intellectual systems — and all this together can be used for increase of efficiency of management of intellectual buildings. Actuality of the presented model is based on necessity and importance of translation of processes of management of life cycle of buildings and constructions in paradigm of Industry 4.0 and application for management of methods of an artificial intellect with universal introduction of independent artificial cognitive agents. Model novelty follows from cumulative consideration of the distributed calculations within the limits of the functional approach and hybrid paradigm of construction of artificial intellectual agents for management of intellectual buildings. The work is theoretical. The article will be interesting to scientists and engineers working in the field of automation of technological and industrial processes both within the limits of intellectual buildings, and concerning management of complex technical and social and technical systems as a whole.
-
Calibration of an elastostatic manipulator model using AI-based design of experiment
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.
The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Comparative analysis of statistical methods of scientific publications classification in medicine
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 921-933In this paper the various methods of machine classification of scientific texts by thematic sections on the example of publications in specialized medical journals published by Springer are compared. The corpus of texts was studied in five sections: pharmacology/toxicology, cardiology, immunology, neurology and oncology. We considered both classification methods based on the analysis of annotations and keywords, and classification methods based on the processing of actual texts. Methods of Bayesian classification, reference vectors, and reference letter combinations were applied. It is shown that the method of classification with the best accuracy is based on creating a library of standards of letter trigrams that correspond to texts of a certain subject. It is turned out that for this corpus the Bayesian method gives an error of about 20%, the support vector machine has error of order 10%, and the proximity of the distribution of three-letter text to the standard theme gives an error of about 5%, which allows to rank these methods to the use of artificial intelligence in the task of text classification by industry specialties. It is important that the support vector method provides the same accuracy when analyzing annotations as when analyzing full texts, which is important for reducing the number of operations for large text corpus.
-
An interactive tool for developing distributed telemedicine systems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 521-527Views (last year): 3. Citations: 4 (RSCI).Getting a qualified medical examination can be difficult for people in remote areas because medical staff available can either be inaccessible or it might lack expert knowledge at proper level. Telemedicine technologies can help in such situations. On one hand, such technologies allow highly qualified doctors to consult remotely, thereby increasing the quality of diagnosis and plan treatment. On the other hand, computer-aided analysis of the research results, anamnesis and information on similar cases assist medical staff in their routine activities and decision-making.
Creating telemedicine system for a particular domain is a laborious process. It’s not sufficient to pick proper medical experts and to fill the knowledge base of the analytical module. It’s also necessary to organize the entire infrastructure of the system to meet the requirements in terms of reliability, fault tolerance, protection of personal data and so on. Tools with reusable infrastructure elements, which are common to such systems, are able to decrease the amount of work needed for the development of telemedicine systems.
An interactive tool for creating distributed telemedicine systems is described in the article. A list of requirements for the systems is presented; structural solutions for meeting the requirements are suggested. A composition of such elements applicable for distributed systems is described in the article. A cardiac telemedicine system is described as a foundation of the tool
-
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Views (last year): 17. Citations: 2 (RSCI).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"