Результаты поиска по 'blocking':
Найдено статей: 37
  1. Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Views (last year): 14.
  2. Adamovskiy Y.R., Chertkov V.M., Bohush R.P.
    Model for building of the radio environment map for cognitive communication system based on LTE
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 127-146

    The paper is devoted to the secondary use of spectrum in telecommunication networks. It is emphasized that one of the solutions to this problem is the use of cognitive radio technologies and dynamic spectrum access for the successful functioning of which a large amount of information is required, including the parameters of base stations and network subscribers. Storage and processing of information should be carried out using a radio environment map, which is a spatio-temporal database of all activity in the network and allows you to determine the frequencies available for use at a given time. The paper presents a two-level model for forming a map of the radio environment of a cellular communication system LTE, in which the local and global levels are highlighted, which is described by the following parameters: a set of frequencies, signal attenuation, signal propagation map, grid step, current time count. The key objects of the model are the base station and the subscriber unit. The main parameters of the base station include: name, identifier, cell coordinates, range number, radiation power, numbers of connected subscriber devices, dedicated resource blocks. For subscriber devices, the following parameters are used: name, identifier, location, current coordinates of the device cell, base station identifier, frequency range, numbers of resource blocks for communication with the station, radiation power, data transmission status, list of numbers of the nearest stations, schedules movement and communication sessions of devices. An algorithm for the implementation of the model is presented, taking into account the scenarios of movement and communication sessions of subscriber devices. A method for calculating a map of the radio environment at a point on a coordinate grid, taking into account losses during the propagation of radio signals from emitting devices, is presented. The software implementation of the model is performed using the MatLab package. The approaches are described that allow to increase the speed of its work. In the simulation, the choice of parameters was carried out taking into account the data of the existing communication systems and the economy of computing resources. The experimental results of the algorithm for the formation of a radio environment map are demonstrated, confirming the correctness of the developed model.

  3. The main aim, formulated in the first part of article, is to carry out detailed numerical studies of the chemical, ionization, optical, and temperature characteristics of the lower ionosphere perturbed by powerful radio emission. The brief review of the main experimental and theoretical researches of physical phenomena occurring in the ionosphere when it is heated by high-power high-frequency radio waves from heating facilities is given. The decisive role of the $D$-region of the ionosphere in the absorption of radio beam energy is shown. A detailed analysis of kinetic processes in the disturbed $D$-region, which is the most complex in kinetic terms, has been performed. It is shown that for a complete description of the ionization-chemical and optical characteristics of the disturbed region, it is necessary to take into account more than 70 components, which, according to their main physical content, can be conveniently divided into five groups. A kinetic model is presented to describe changes in the concentrations of components interacting (the total number of reactions is 259). The system of kinetic equations was solved using a semi-implicit numerical method specially adapted to such problems. Based on the proposed structure, a software package was developed in which the algorithm scheme allowed changing both the content of individual program blocks and their number, which made it possible to conduct detailed numerical studies of individual processes in the behavior of the parameters of the perturbed region. The complete numerical algorithm is based on the two-temperature approximation, in which the main attention was paid to the calculation of the electron temperature, since its behavior is determined by inelastic kinetic processes involving electrons. The formulation of the problem is of a rather general nature and makes it possible to calculate the parameters of the disturbed ionosphere in a wide range of powers and frequencies of radio emission. Based on the developed numerical technique, it is possible to study a wide range of phenomena both in the natural and disturbed ionosphere.

  4. Lyubushin A.A., Rodionov E.A.
    Analysis of predictive properties of ground tremor using Huang decomposition
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958

    A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.

  5. Kuznetsov M.B., Kolobov A.V.
    Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 487-501

    In the last decade along with classical cytotoxic agents, antiangiogenic drugs have been actively used in cancer chemotherapy. They are not aimed at killing malignant cells, but at blocking the process of angiogenesis, i.e., the growth of new vessels in the tumor and its surrounding tissues. Agents that stimulate angiogenesis, in particular, vascular endothelial growth factor, are actively produced by tumor cells in the state of metabolic stress. It is believed that blocking of tumor neovascularization should lead to a shortage of nutrients flow to the tumor, and thus can stop, or at least significantly slow down its growth. Clinical practice on the use of first antiangiogenic drug bevacizumab has shown that in some cases such therapy does not influence the growth rate of the tumor, whereas for other types of malignant neoplasms antiangiogenic therapy has a high antitumor effect. However, it has been shown that along with successful slowing of tumor growth, therapy with bevacizumab can induce directed tumor progression to a more invasive, and therefore more lethal, type. These data require theoretical analysis and rationale for the evolutionary factors that lead to the observation of epithelial-mesenchymal transition. For this purpose we have developed a spatially distributed mathematical model of growth and antiangiogenic therapy of heterogeneous tumor consisting of two subpopulations of malignant cells. One of subpopulations possesses inherent characteristics of epithelial phenotype, i.e., low motility and high proliferation rate, the other one corresponds to mesenchymal phenotype having high motility and low proliferation rate. We have performed the investigation of competition between these subpopulations of heterogeneous tumor in the cases of tumor growth without therapy and under bevacizumab monotherapy. It is shown that constant use of antiangiogenic drug leads to an increase of the region in parameter space, where the dominance of mesenchymal phenotype takes place, i.e., within a certain range of parameters in the absence of therapy epithelial phenotype is dominant but during bevacizumab administration mesenchymal phenotype begins to dominate. This result provides a theoretical basis of the clinically observed directed tumor progression to more invasive type under antiangiogenic therapy.

    Views (last year): 10. Citations: 2 (RSCI).
  6. Kotliarova E.V., Severilov P.A., Ivchenkov Y.P., Mokrov P.V., Chekanov M.O., Gasnikova E.V., Sharovatova Y.I.
    Speeding up the two-stage simultaneous traffic assignment model
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 343-355

    This article describes possible improvements for the simultaneous multi-stage transport model code for speeding up computations and improving the model detailing. The model consists of two blocks, where the first block is intended to calculate the correspondence matrix, and the second block computes the equilibrium distribution of traffic flows along the routes. The first block uses a matrix of transport costs that calculates a matrix of correspondences. It describes the costs (time in our case) of travel from one area to another. The second block presents how exactly the drivers (agents) are distributed along the possible paths. So, knowing the distribution of the flows along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage traffic flow model is a fixed point of a sequence of the two described models. Thus, in this paper we report an attempt to influence the calculation speed of Dijkstra’s algorithm part of the model. It is used to calculate the shortest path from one point to another, which should be re-calculated after each iteration of the flow distribution part. We also study and implement the road pricing in the model code, as well as we replace the Sinkhorn algorithm in the calculation of the correspondence matrix part with its faster implementation. In the beginning of the paper, we provide a short theoretical overview of the transport modelling motivation; we discuss current approaches to the modelling and provide an example for demonstration of how the whole cycle of multi-stage transport modelling works.

  7. Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  8. Sabirov A.I., Katasev A.S., Dagaeva M.V.
    A neural network model for traffic signs recognition in intelligent transport systems
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435

    This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.

  9. Kochetkova E.V.
    Modeling of the supply–demand imbalance in engineering labor market
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1249-1273

    Nowadays the situation of supply-demand imbalances in the professionals’ labor markets causes human capital losses as far as hampers scientific and innovation development. In Russia, supply-demand imbalances in the engineering labor market are associated with deindustrialization processes and manufacturing decline, resulted in a negative public perception of the engineering profession and high rates of graduates not working within the specialty or changing their occupation.

    For analysis of the supply-demand imbalances in the engineering labor market, we elaborated a macroeconomic model. The model consists of 14 blocks, including blocks for demand and supply for engineers and technicians, along with the blocks for macroeconomic indicators as industry and service sector output, capital investment. Using this model, we forecasted the perspective supply-demand imbalances in the engineering labor market in a short-term period and examined the parameters of getting supply-demand balance in the medium-term perspective.

    The results obtained show that situation of more balanced supply and demand for engineering labor is possible if there is simultaneous increase in the share of investments in fixed assets of manufacturing and relative wages in industry, besides getting to balance is facilitated by a decrease of the share of graduates not working by specialty. It is worth noting that a decrease in the share of graduates not working by specialty may be affected whether by the growth of relative wages in industry and number of vacancies or by the implementation of measures aimed at improving the working conditions of the engineering workforce and increasing the attractiveness of the profession. To summarize, in the case of the simplest scenario, not considering additional measures of working conditions improvement and increasing the attractiveness of the profession, the conditions of supply-demand balance achievement implies slightly lower growth rates of investment in industry than required in scenarios that involve increasing the share of engineers and technicians working in their specialty after graduation. The latter case, where a gradual decrease in the proportion of those who do not work in engineering specialty is expected, requires, probably, higher investment costs for attracting specialists and creating new jobs, as well as additional measures to strengthen the attractiveness of the engineering profession.

  10. Kerchev I.A., Markov N.G., Machuca C.R., Tokareva O.S.
    Classification of pest-damaged coniferous trees in unmanned aerial vehicles images using convolutional neural network models
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1271-1294

    This article considers the task of multiclass classification of coniferous trees with varying degrees of damage by insect pests on images obtained using unmanned aerial vehicles (UAVs). We propose the use of convolutional neural networks (CNNs) for the classification of fir trees Abies sibirica and Siberian pine trees Pinus sibirica in unmanned aerial vehicles (UAV) imagery. In our approach, we develop three CNN models based on the classical U-Net architecture, designed for pixel-wise classification of images (semantic segmentation). The first model, Mo-U-Net, incorporates several changes to the classical U-Net model. The second and third models, MSC-U-Net and MSC-Res-U-Net, respectively, form ensembles of three Mo-U-Net models, each varying in depth and input image sizes. Additionally, the MSC-Res-U-Net model includes the integration of residual blocks. To validate our approach, we have created two datasets of UAV images depicting trees affected by pests, specifically Abies sibirica and Pinus sibirica, and trained the proposed three CNN models utilizing mIoULoss and Focal Loss as loss functions. Subsequent evaluation focused on the effectiveness of each trained model in classifying damaged trees. The results obtained indicate that when mIoULoss served as the loss function, the proposed models fell short of practical applicability in the forestry industry, failing to achieve classification accuracy above the threshold value of 0.5 for individual classes of both tree species according to the IoU metric. However, under Focal Loss, the MSC-Res-U-Net and Mo-U-Net models, in contrast to the third proposed model MSC-U-Net, exhibited high classification accuracy (surpassing the threshold value of 0.5) for all classes of Abies sibirica and Pinus sibirica trees. Thus, these results underscore the practical significance of the MSC-Res-U-Net and Mo-U-Net models for forestry professionals, enabling accurate classification and early detection of pest outbreaks in coniferous trees.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"