Результаты поиска по 'computer models':
Найдено статей: 260
  1. Pyreev A.O., Tarasov I.A.
    Application of computational simulation techniques for designing swim-out release systems
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 597-606

    The article describes the basic approaches of the calculation procedure of payload swim-out (objects of different function with own propulsor) from the underwater carrier a method of a self-exit using modern CFD technologies. It contains the description of swim-out by a self-exit method, its advantages and disadvantages. Also it contains results of research of convergence on a grid of a final-volume model with accuracy-time criterion, and results of comparison of calculation with experiment (validation of models). Validation of models was carried out using the available data of experimental definition of traction characteristics of water-jet propulsor of the natural sample in the development pool. Calculations of traction characteristics of water-jet propulsor were carried out via software package FlowVision ver. 3.10. On the basis of comparison of results of calculations for conditions of carrying out of experiments the error of water-jet propulsor calculated model which has made no more than 5% in a range of advance coefficient water-jet propulsor, realised in the process of swim-out by a selfexit method has been defined. The received value of an error of calculation of traction characteristics is used for definition of limiting settlement values of speed of branch of object from the carrier (the minimum and maximum values). The considered problem is significant from the scientific point of view thanks to features of the approach to modelling hydrojet moving system together with movement of separated object, and also from the practical point of view, thanks to possibility of reception with high degree of reliability of parametres swim-out of objects from sea bed vehicles a method of the self-exit which working conditions are assumed by movement in the closed volumes, already on a design stage.

  2. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  3. Zenyuk D.A.
    Stochastic simulation of chemical reactions in subdiffusion medium
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104

    Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.

    Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.

    Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.

  4. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  5. Polyakov S.V., Podryga V.O.
    A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 781-794

    The work is devoted to the study of the influence of nonlinear processes in the boundary layer on the general nature of gas flows in microchannels of technical systems. Such a study is actually concerned with nanotechnology problems. One of the important problems in this area is the analysis of gas flows in microchannels in the case of transient and supersonic flows. The results of this analysis are important for the gas-dynamic spraying techique and for the synthesis of new nanomaterials. Due to the complexity of the implementation of full-scale experiments on micro- and nanoscale, they are most often replaced by computer simulations. The efficiency of computer simulations is achieved by both the use of new multiscale models and the combination of mesh and particle methods. In this work, we use the molecular dynamics method. It is applied to study the establishment of a gas microflow in a metal channel. Nitrogen was chosen as the gaseous medium. The metal walls of the microchannels consisted of nickel atoms. In numerical experiments, the accommodation coefficients were calculated at the boundary between the gas flow and the metal wall. The study of the microsystem in the boundary layer made it possible to form a multicomponent macroscopic model of the boundary conditions. This model was integrated into the macroscopic description of the flow based on a system of quasi-gas-dynamic equations. On the basis of such a transformed gas-dynamic model, calculations of microflow in real microsystem were carried out. The results were compared with the classical calculation of the flow, which does not take into account nonlinear processes in the boundary layer. The comparison showed the need to use the developed model of boundary conditions and its integration with the classical gas-dynamic approach.

  6. Koubassova N.A., Tsaturyan A.K.
    Molecular dynamics assessment of the mechanical properties of fibrillar actin
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092

    Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.

  7. Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  8. Akimov S.V., Borisov D.V.
    Centrifugal pump modeling in FlowVision CFD software
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 907-919

    This paper presents a methodology for modeling centrifugal pumps using the example of the NM 1250 260 main oil centrifugal pump. We use FlowVision CFD software as the numerical modeling instrument. Bench tests and numerical modeling use water as a working fluid. The geometrical model of the pump is fully three-dimensional and includes the pump housing to account for leakages. In order to reduce the required computational resources, the methodology specifies leakages using flow rate rather than directly modeling them. Surface roughness influences flow through the wall function model. The wall function model uses an equivalent sand roughness, and a formula for converting real roughness into equivalent sand roughness is applied in this work. FlowVision uses the sliding mesh method for simulation of the rotation of the impeller. This approach takes into account the nonstationary interaction between the rotor and diffuser of the pump, allowing for accurate resolution of recirculation vortices that occur at low flow rates.

    The developed methodology has achieved high consistency between numerical simulations results and experiments at all pump operating conditions. The deviation in efficiency at nominal conditions is 0.42%, and in head is 1.9%. The deviation of calculated characteristics from experimental ones increases as the flow rate increases and reaches a maximum at the far-right point of the characteristic curve (up to 4.8% in head). This phenomenon occurs due to a slight mismatch between the geometric model of the impeller used in the calculation and the real pump model from the experiment. However, the average arithmetic relative deviation between numerical modeling and experiment for pump efficiency at 6 points is 0.39%, with an experimental efficiency measurement error of 0.72%. This meets the accuracy requirements for calculations. In the future, this methodology can be used for a series of optimization and strength calculations, as modeling does not require significant computational resources and takes into account the non-stationary nature of flow in the pump.

  9. Kapitan V.U., Peretyat'ko A.A., Ivanov U.P., Nefedev K.V., Belokon V.I.
    Superscale simulation of the magnetic states and reconstruction of the ordering types for nanodots arrays
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 309-318

    We consider two possible computational methods of the interpretation of experimental data obtained by means of the magnetic force microscopy. These methods of macrospin distribution simulation and reconstruction can be used for research of magnetization reversal processes of nanodots in ordered 2D arrays of nanodots. New approaches to the development of high-performance superscale algorithms for parallel executing on a supercomputer clusters for solving direct and inverse task of the modeling of magnetic states, types of ordering, reversal processes of nanosystems with a collective behavior are proposed. The simulation results are consistent with experimental results.

    Views (last year): 2.
  10. Prudnikov V.V., Prudnikov P.V., Pospelov E.A.
    Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 119-129

    Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.

    Views (last year): 11.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"