Результаты поиска по 'continuity equation':
Найдено статей: 55
  1. Muhartova Ju.V., Mangura P.A., Levashova N.T., Olchev A.V.
    Selection of boundary conditions for modeling the turbulent exchange processes within the atmospheric surface layer
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 27-46

    One- and two-dimensional hydrodynamic models of turbulent transfer within the atmospheric surface layer under neutral thermal stratification are considered. Both models are based on the solution of system of the timeaveraged equations of Navier – Stokes and continuity using a 1.5-order closure scheme as well as equations for turbulent kinetic energy and the rate of its dissipation. The influence of the upper and lower boundary conditions on vertical profiles of wind speed and turbulence parameters within the atmospheric surface layer was derived using an one-dimensional model usually applied in case of an uniform ground surface. The boundary conditions in the model were prescribed in such way that the vertical wind and turbulence patterns were well agreed with widely used logarithmic vertical profile of wind speed, linear dependence of turbulent exchange coefficient on height above ground surface level and constancy of turbulent kinetic energy within the atmospheric surface layer under neutral atmospheric conditions. On the basis of the classical one-dimensional model it is possible to obtain a number of relationships which link the vertical wind speed gradient, turbulent kinetic energy and the rate of its dissipation. Each of these relationships can be used as a boundary condition in our hydrodynamic model. The boundary conditions for the wind speed and the rate of dissipation of turbulent kinetic energy were selected as parameters to provide the smallest deviations of model calculations from classical distributions of wind and turbulence parameters. The corresponding upper and lower boundary conditions were used to define the initial and boundary value problem in the two-dimensional hydrodynamic model allowing to consider complex topography and horizontal vegetation heterogeneity. The two-dimensional model with selected optimal boundary conditions was used to describe the spatial pattern of turbulent air flow when it interacted with the forest edge. The dynamics of the air flow establishment depending on the distance from the forest edge was analyzed. For all considered initial and boundary value problems the unconditionally stable implicit finite-difference schemes of their numerical solution were developed and implemented.

    Views (last year): 19.
  2. We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.

  3. Zharkova V.V., Schelyaev A.E., Dyadkin A.A., Pavlov A.O., Simakova T.V.
    The calculation of hydrodynamic impact on reentry vehicle during splashdown
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 37-46

    The reentry vehicle of the transportation spacecraft that is being created by RSC Energia in regular mode makes soft landing on land surface using a parachute system and thruster devices. But in not standard situations the reentry vehicle also is capable of executing a splashdown. In that case, it becomes important to define the hydrodynamics impact on the reentry vehicle at the moment of the first contact with the surface of water and during submersion into water medium, and to study the dynamics of the vehicle behavior at more recent moments of time.

    This article presents results of numerical studies of hydrodynamics forces on the conical vehicle during splashdown, done with the FlowVision software. The paper reviews the cases of the splashdown with inactive solid rocket motors on calm sea and the cases with interactions between rocket jets and the water surface. It presents data on the allocation of pressure on the vehicle in the process of the vehicle immersion into water medium and dynamics of the vehicle behavior after splashdown. The paper also shows flow structures in the area of the reentry vehicle at the different moments of time, and integral forces and moments acting on the vehicle.

    For simulation process with moving interphases in the FlowVision software realized the model VOF (volume of fluid). Transfer of the phase boundary is described by the equation of volume fraction of this continuous phase in a computational cell. Transfer contact surface is described by the convection equation, and at the surface tension is taken into account by the Laplace pressure. Key features of the method is the splitting surface cells where data is entered the corresponding phase. Equations for both phases (like the equations of continuity, momentum, energy and others) in the surface cells are accounted jointly.

    Views (last year): 30.
  4. Kashchenko N.M., Ishanov S.A., Zinin L.V., Matsievsky S.V.
    A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58

    The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.

    One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.

    Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.

    The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.

    At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.

    The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.

    The results of the numerical experiments allow to draw the following conclusions.

    1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.

    2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.

    3. For the smooth initial profile the best results were shown by the Koren limiter.

    4. The smooth F limiter showed the results similar to Koren limiter.

    5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.

    6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.

    7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.

  5. Kozhevnikov V.S., Matyushkin I.V., Chernyaev N.V.
    Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735

    Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.

    In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.

  6. The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable $x_\alpha^{}$, and in the second case, the integral of the unknown function with respect to the integration variable $\tau$, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation $O(h^2+\tau)$. In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable $x_\alpha^{}$, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in $h_\alpha^{}$ for a general parabolic type equation containing one-sided derivatives taking into account the sign of $r_\alpha^{}(x,t)$. To increase the boundary conditions of the third kind to the second order of accuracy in $h_\alpha^{}$, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the $L_2^{}$-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the $L_2^{}$-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.

  7. The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.

    Views (last year): 10. Citations: 4 (RSCI).
  8. Nazarov V.G.
    Improvement of image quality in a computer tomography by means of integral transformation of a special kind
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1033-1046

    The question on improvement of quality of images obtained in a tomography problem is considered. The problem consists in finding of boundaries of inhomogeneities (inclusions) in a continuous medium by results of X-ray radiography of this medium. A nonlinear integral transformation of a special kind is proposed which allows to improve quality of images obtained earlier at a set of papers. The method is realized numerically by the use of computer modelling. Some calculations are carried out with use of data for concrete materials. The results obtained are presented by drawings and graphic images.

    Views (last year): 6.
  9. The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.

    Views (last year): 15. Citations: 2 (RSCI).
  10. Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"