Результаты поиска по 'heat conductivity equation':
Найдено статей: 15
  1. Spevak L.P., Nefedova O.A.
    Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22

    The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.

  2. Bondareva N.S., Gibanov N.S., Martyushev S.G., Miroshnichenko I.V., Sheremet M.A.
    Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 567-578

    Comparative analysis of two numerical methods for simulation of unsteady natural convection and thermal surface radiation within a differentially heated cubical cavity has been carried out. The considered domain of interest had two isothermal opposite vertical faces, while other walls are adiabatic. The walls surfaces were diffuse and gray, namely, their directional spectral emissivity and absorptance do not depend on direction or wavelength but can depend on surface temperature. For the reflected radiation we had two approaches such as: 1) the reflected radiation is diffuse, namely, an intensity of the reflected radiation in any point of the surface is uniform for all directions; 2) the reflected radiation is uniform for each surface of the considered enclosure. Mathematical models formulated both in primitive variables “velocity–pressure” and in transformed variables “vector potential functions – vorticity vector” have been performed numerically using finite volume method and finite difference methods, respectively. It should be noted that radiative heat transfer has been analyzed using the net-radiation method in Poljak approach.

    Using primitive variables and finite volume method for the considered boundary-value problem we applied power-law for an approximation of convective terms and central differences for an approximation of diffusive terms. The difference motion and energy equations have been solved using iterative method of alternating directions. Definition of the pressure field associated with velocity field has been performed using SIMPLE procedure.

    Using transformed variables and finite difference method for the considered boundary-value problem we applied monotonic Samarsky scheme for convective terms and central differences for diffusive terms. Parabolic equations have been solved using locally one-dimensional Samarsky scheme. Discretization of elliptic equations for vector potential functions has been conducted using symmetric approximation of the second-order derivatives. Obtained difference equation has been solved by successive over-relaxation method. Optimal value of the relaxation parameter has been found on the basis of computational experiments.

    As a result we have found the similar distributions of velocity and temperature in the case of these two approaches for different values of Rayleigh number, that illustrates an operability of the used techniques. The efficiency of transformed variables with finite difference method for unsteady problems has been shown.

    Views (last year): 13. Citations: 1 (RSCI).
  3. Surov V.S.
    Relaxation model of viscous heat-conducting gas
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 23-43

    A hyperbolic model of a viscous heat-conducting gas is presented, in which the Maxwell – Cattaneo approach is used to hyperbolize the equations, which provides finite wave propagation velocities. In the modified model, instead of the original Stokes and Fourier laws, their relaxation analogues were used and it is shown that when the relaxation times $\tau_\sigma^{}$ и $\tau_w^{}$ tend to The hyperbolized equations are reduced to zero to the classical Navier – Stokes system of non-hyperbolic type with infinite velocities of viscous and heat waves. It is noted that the hyperbolized system of equations of motion of a viscous heat-conducting gas considered in this paper is invariant not only with respect to the Galilean transformations, but also with respect to rotation, since the Yaumann derivative is used when differentiating the components of the viscous stress tensor in time. To integrate the equations of the model, the hybrid Godunov method (HGM) and the multidimensional nodal method of characteristics were used. The HGM is intended for the integration of hyperbolic systems in which there are equations written both in divergent form and not resulting in such (the original Godunov method is used only for systems of equations presented in divergent form). A linearized solver’s Riemann is used to calculate flow variables on the faces of adjacent cells. For divergent equations, a finitevolume approximation is applied, and for non-divergent equations, a finite-difference approximation is applied. To calculate a number of problems, we also used a non-conservative multidimensional nodal method of characteristics, which is based on splitting the original system of equations into a number of one-dimensional subsystems, for solving which a one-dimensional nodal method of characteristics was used. Using the described numerical methods, a number of one-dimensional problems on the decay of an arbitrary rupture are solved, and a two-dimensional flow of a viscous gas is calculated when a shock jump interacts with a rectangular step that is impermeable to gas.

  4. Kashchenko N.M., Ishanov S.A., Zinin L.V., Matsievsky S.V.
    A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58

    The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.

    One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.

    Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.

    The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.

    At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.

    The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.

    The results of the numerical experiments allow to draw the following conclusions.

    1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.

    2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.

    3. For the smooth initial profile the best results were shown by the Koren limiter.

    4. The smooth F limiter showed the results similar to Koren limiter.

    5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.

    6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.

    7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.

  5. The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.

    Views (last year): 10. Citations: 4 (RSCI).
  6. Peskova E.E., Snytnikov V.N., Zhalnin R.V.
    The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187

    The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.

  7. Astanina M.S., Sheremet M.A.
    Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107

    Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.

    Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.

    Views (last year): 34.
  8. Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  9. Zhluktov S.V., Aksenov A.A., Savitskiy D.V.
    High-Reynolds number calculations of turbulent heat transfer in FlowVision software
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 461-481

    This work presents the model of heat wall functions FlowVision (WFFV), which allows simulation of nonisothermal flows of fluid and gas near solid surfaces on relatively coarse grids with use of turbulence models. The work follows the research on the development of wall functions applicable in wide range of the values of quantity y+. Model WFFV assumes smooth profiles of the tangential component of velocity, turbulent viscosity, temperature, and turbulent heat conductivity near a solid surface. Possibility of using a simple algebraic model for calculation of variable turbulent Prandtl number is investigated in this study (the turbulent Prandtl number enters model WFFV as parameter). The results are satisfactory. The details of implementation of model WFFV in the FlowVision software are explained. In particular, the boundary condition for the energy equation used in high-Reynolds number calculations of non-isothermal flows is considered. The boundary condition is deduced for the energy equation written via thermodynamic enthalpy and via full enthalpy. The capability of the model is demonstrated on two test problems: flow of incompressible fluid past a plate and supersonic flow of gas past a plate (M = 3).

    Analysis of literature shows that there exists essential ambiguity in experimental data and, as a consequence, in empirical correlations for the Stanton number (that being a dimensionless heat flux). The calculations suggest that the default values of the model parameters, automatically specified in the program, allow calculations of heat fluxes at extended solid surfaces with engineering accuracy. At the same time, it is obvious that one cannot invent universal wall functions. For this reason, the controls of model WFFV are made accessible from the FlowVision interface. When it is necessary, a user can tune the model for simulation of the required type of flow.

    The proposed model of wall functions is compatible with all the turbulence models implemented in the FlowVision software: the algebraic model of Smagorinsky, the Spalart-Allmaras model, the SST $k-\omega$ model, the standard $k-\varepsilon$ model, the $k-\varepsilon$ model of Abe, Kondoh, Nagano, the quadratic $k-\varepsilon$ model, and $k-\varepsilon$ model FlowVision.

    Views (last year): 23.
  10. Sorokin K.E., Byvaltsev P.M., Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Babulin A.A., Shevyakov V.I.
    Numerical simulation of ice accretion in FlowVision software
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 83-96

    Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice bodies formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion, which would be authorized by Russian certifying supervisory authority, is absent. This paper describes methodology IceVision recently developed in Russia on the basis of software FlowVision for calculations of ice accretion on airplane surfaces.

    The main difference of methodology IceVision from the other approaches, known from literature, consists in using technology Volume Of Fluid (VOF — volume of fluid in cell) for tracking the surface of growing ice body. The methodology assumes solving a time-depended problem of continuous grows of ice body in the Euler formulation. The ice is explicitly present in the computational domain. The energy equation is integrated inside the ice body. In the other approaches, changing the ice shape is taken into account by means of modifying the aerodynamic surface and using Lagrangian mesh. In doing so, the heat transfer into ice is allowed for by an empirical model.

    The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. It automatically identifies zones of rime and glaze ice. In a rime (dry) ice zone, the temperature of the contact surface between air and ice is calculated with account of ice sublimation and heat conduction inside the ice. In a glaze (wet) ice zone, the flow of the water film over the ice surface is allowed for. The film freezes due to evaporation and heat transfer inside the air and the ice. Methodology IceVision allows for separation of the film. For simulation of the two-phase flow of the air and droplets, a multi-speed model is used within the Euler approach. Methodology IceVision allows for size distribution of droplets. The computational algorithm takes account of essentially different time scales for the physical processes proceeding in the course of ice accretion, viz., air-droplets flow, water flow, and ice growth. Numerical solutions of validation test problems demonstrate efficiency of methodology IceVision and reliability of FlowVision results.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"