All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Evaluation of the scalability property of the program for the simulation of atmospheric chemical transport by means of the simulator gem5
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 773-794In this work we have developed a new efficient program for the numerical simulation of 3D global chemical transport on an adaptive finite-difference grid which allows us to concentrate grid points in the regions where flow variables sharply change and coarsen the grid in the regions of their smooth behavior, which significantly minimizes the grid size. We represent the adaptive grid with a combination of several dynamic (tree, linked list) and static (array) data structures. The dynamic data structures are used for a grid reconstruction, and the calculations of the flow variables are based on the static data structures. The introduction of the static data structures allows us to speed up the program by a factor of 2 in comparison with the conventional approach to the grid representation with only dynamic data structures.
We wrote and tested our program on a computer with 6 CPU cores. Using the computer microarchitecture simulator gem5, we estimated the scalability property of the program on a significantly greater number of cores (up to 32), using several models of a computer system with the design “computational cores – cache – main memory”. It has been shown that the microarchitecture of a computer system has a significant impact on the scalability property, i.e. the same program demonstrates different efficiency on different computer microarchitectures. For example, we have a speedup of 14.2 on a processor with 32 cores and 2 cache levels, but we have a speedup of 22.2 on a processor with 32 cores and 3 cache levels. The execution time of a program on a computer model in gem5 is 104–105 times greater than the execution time of the same program on a real computer and equals 1.5 hours for the most complex model.
Also in this work we describe how to configure gem5 and how to perform simulations with gem5 in the most optimal way.
-
Computational modeling of the thermal and physical processes in the high-temperature gas-cooled reactor
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 895-906The development of a high-temperature gas-cooled reactor (HTGR) constituting a part of nuclear power-and-process station and intended for large-scale hydrogen production is now in progress in the Russian Federation. One of the key objectives in development of the high-temperature gas-cooled reactor is the computational justification of the accepted design.
The article gives the procedure for the computational analysis of thermal and physical characteristics of the high-temperature gas-cooled reactor. The procedure is based on the use of the state-of-the-art codes for personal computer (PC).
The objective of thermal and physical analysis of the reactor as a whole and of the core in particular was achieved in three stages. The idea of the first stage is to justify the neutron physical characteristics of the block-type core during burn-up with the use of the MCU-HTR code based on the Monte Carlo method. The second and the third stages are intended to study the coolant flow and the temperature condition of the reactor and the core in 3D with the required degree of detailing using the FlowVision and the ANSYS codes.
For the purpose of carrying out the analytical studies the computational models of the reactor flow path and the fuel assembly column were developed.
As per the results of the computational modeling the design of the support columns and the neutron physical characteristics of the fuel assembly were optimized. This results in the reduction of the total hydraulic resistance of the reactor and decrease of the maximum temperature of the fuel elements.
The dependency of the maximum fuel temperature on the value of the power peaking factors determined by the arrangement of the absorber rods and of the compacts of burnable absorber in the fuel assembly is demonstrated.
-
Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.
-
System modeling, risks evaluation and optimization of a distributed computer system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.
The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.
Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.
-
Calibration of diversity indexes and search for ecologically tolerable levels of abiotic factors (case study: water objects of the Don river)
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 199-207Views (last year): 1.With the data obtained by hydrobiological monitoring of water objects of Don river for many years (1978-1988) calculation of rank distribution parameters and indexes of dominance for phytoplankton species abundance was conducted. The borders of investigated characteristics are calculated. They correspond to borders of ecological well-being - trouble conditions of phytoplankton communities. Ecologically tolerable levels for the core abiotic factors are found. Contribution of each of analyzed factors to a degree of ecological trouble is established.
-
The optimization approach to simulation modeling of microstructures
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 597-606Views (last year): 4. Citations: 7 (RSCI).The paper presents an optimization approach to microstructure simulation. Porosity function was optimized by numerical method, grain-size model was optimized by complex method based on criteria of model quality. Methods have been validated on examples. Presented new regression model of model quality. Actual application of proposed method is 3D reconstruction of core sample microstructure. Presented results suggest to prolongation of investigations.
-
Development of methodology for computational analysis of thermo-hydraulic processes proceeding in fast-neutron reactor with FlowVision CFD software
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 87-94Views (last year): 6. Citations: 1 (RSCI).An approach to numerical analysis of thermo-hydraulic processes proceeding in a fast-neutron reactor is described in the given article. The description covers physical models, numerical schemes and geometry simplifications accepted in the computational model. Steady-state and dynamic regimes of reactor operation are considered. The steady-state regimes simulate the reactor operation at nominal power. The dynamic regimes simulate the shutdown reactor cooling by means of the heat-removal system.
Simulation of thermo-hydraulic processes is carried out in the FlowVision CFD software. A mathematical model describing the coolant flow in the first loop of the fast-neutron reactor was developed on the basis of the available geometrical model. The flow of the working fluid in the reactor simulator is calculated under the assumption that the fluid density does not depend on pressure, with use a $k–\varepsilon$ turbulence model, with use of a model of dispersed medium, and with account of conjugate heat exchange. The model of dispersed medium implemented in the FlowVision software allowed taking into account heat exchange between the heat-exchanger lops. Due to geometric complexity of the core region, the zones occupied by the two heat exchangers were modeled by hydraulic resistances and heat sources.
Numerical simulation of the coolant flow in the FlowVision software enabled obtaining the distributions of temperature, velocity and pressure in the entire computational domain. Using the model of dispersed medium allowed calculation of the temperature distributions in the second loops of the heat exchangers. Besides that, the variation of the coolant temperature along the two thermal probes is determined. The probes were located in the cool and hot chambers of the fast-neutron reactor simulator. Comparative analysis of the numerical and experimental data has shown that the developed mathematical model is correct and, therefore, it can be used for simulation of thermo-hydraulic processes proceeding in fast-neutron reactors with sodium coolant.
-
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Views (last year): 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
Mathematical model of hydride phase change in a symmetrical powder particle
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 569-584Views (last year): 2. Citations: 2 (RSCI).In the paper we construct the model of phase change. Process of hydriding / dehydriding is taken as an example. A single powder particle is considered under the assumption about its symmetry. A ball, a cylinder, and a flat plate are examples of such symmetrical shapes. The model desribes both the "shrinking core"(when the skin of the new phase appears on the surface of the particle) and the "nucleation and growth"(when the skin does not appear till complete vanishing of the old phase) scenarios. The model is the non-classical boundary-value problem with the free boundary and nonlinear Neumann boundary condition. The symmetry assumptions allow to reduce the problem to the single spatial variable. The model was tested on the series of experimental data. We show that the particle shape’s influence on the kinetics is insignificant. We also show that a set of particles of different shapes with size distribution can be approxomated by the single particle of the "average" size and of a simple shape; this justifies using single particle approximation and simple shapes in mathematical models.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"