All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Distributed computing model for the organization of a software environment that provides management of intelligent building automation systems
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 557-570The present article describes the authors’ model of construction of the distributed computer network and realization in it of the distributed calculations which are carried out within the limits of the software-information environment providing management of the information, automated and engineering systems of intellectual buildings. The presented model is based on the functional approach with encapsulation of the non-determined calculations and various side effects in monadic calculations that allows to apply all advantages of functional programming to a choice and execution of scenarios of management of various aspects of life activity of buildings and constructions. Besides, the described model can be used together with process of intellectualization of technical and sociotechnical systems for increase of level of independence of decision-making on management of values of parameters of the internal environment of a building, and also for realization of methods of adaptive management, in particular application of various techniques and approaches of an artificial intellect. An important part of the model is a directed acyclic graph, which is an extension of the blockchain with the ability to categorically reduce the cost of transactions taking into account the execution of smart contracts. According to the authors it will allow one to realize new technologies and methods — the distributed register on the basis of the directed acyclic graph, calculation on edge and the hybrid scheme of construction of artificial intellectual systems — and all this together can be used for increase of efficiency of management of intellectual buildings. Actuality of the presented model is based on necessity and importance of translation of processes of management of life cycle of buildings and constructions in paradigm of Industry 4.0 and application for management of methods of an artificial intellect with universal introduction of independent artificial cognitive agents. Model novelty follows from cumulative consideration of the distributed calculations within the limits of the functional approach and hybrid paradigm of construction of artificial intellectual agents for management of intellectual buildings. The work is theoretical. The article will be interesting to scientists and engineers working in the field of automation of technological and industrial processes both within the limits of intellectual buildings, and concerning management of complex technical and social and technical systems as a whole.
-
Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.
In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"