All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Retail forecasting on high-frequency depersonalized data
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.
-
Augmented data routing algorithms for satellite delay-tolerant networks. Development and validation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 983-993The problem of centralized planning for data transmission routes in delay tolerant networks is considered. The original problem is extended with additional requirements to nodes storage and communication process. First, it is assumed that the connection between the nodes of the graph is established using antennas. Second, it is assumed that each node has a storage of finite capacity. The existing works do not consider these requirements. It is assumed that we have in advance information about messages to be processed, information about the network configuration at specified time points taken with a certain time periods, information on time delays for the orientation of the antennas for data transmission and restrictions on the amount of data storage on each satellite of the grouping. Two wellknown algorithms — CGR and Earliest Delivery with All Queues are improved to satisfy the extended requirements. The obtained algorithms solve the optimal message routing problem separately for each message. The problem of validation of the algorithms under conditions of lack of test data is considered as well. Possible approaches to the validation based on qualitative conjectures are proposed and tested, and experiment results are described. A performance comparison of the two implementations of the problem solving algorithms is made. Two algorithms named RDTNAS-CG and RDTNAS-AQ have been developed based on the CGR and Earliest Delivery with All Queues algorithms, respectively. The original algorithms have been significantly expanded and an augmented implementation has been developed. Validation experiments were carried to check the minimum «quality» requirements for the correctness of the algorithms. Comparative analysis of the performance of the two algorithms showed that the RDTNAS-AQ algorithm is several orders of magnitude faster than RDTNAS-CG.
-
Exact calculation of a posteriori probability distribution with distributed computing systems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542Views (last year): 3.We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.
Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.
The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.
The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.
-
GridFTP frontend with redirection for DMlite
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 543-547Views (last year): 1.One of the most widely used storage solutions in WLCG is a Disk Pool Manager (DPM) developed and supported by SDC/ID group at CERN. Recently DPM went through a massive overhaul to address scalability and extensibility issues of the old code.
New system was called DMLite. Unlike the old DPM that was based on daemons, DMLite is arranged as a library that can be loaded directly by an application. This approach greatly improves performance and transaction rate by avoiding unnecessary inter-process communication via network as well as threading bottlenecks.
DMLite has a modular architecture with its core library providing only the very basic functionality. Backends (storage engines) and frontends (data access protocols) are implemented as plug-in modules. Doubtlessly DMLite wouldn't be able to completely replace DPM without GridFTP as it is used for most of the data transfers in WLCG.
In DPM GridFTP support was implemented in a Data Storage Interface (DSI) module for Globus’ GridFTP server. In DMLite an effort was made to rewrite a GridFTP module from scratch in order to take advantage of new DMLite features and also implement new functionality. The most important improvement over the old version is a redirection capability.
With old GridFTP frontend a client needed to contact SRM on the head node in order to obtain a transfer URL (TURL) before reading or writing a file. With new GridFTP frontend this is no longer necessary: a client may connect directly to the GridFTP server on the head node and perform file I/O using only logical file names (LFNs). Data channel is then automatically redirected to a proper disk node.
This renders the most often used part of SRM unnecessary, simplifies file access and improves performance. It also makes DMLite a more appealing choice for non-LHC VOs that were never much interested in SRM.
With new GridFTP frontend it's also possible to access data on various DMLite-supported backends like HDFS, S3 and legacy DPM.
-
Distributed dCache-based storage system of UB RAS
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 559-563Citations: 3 (RSCI).The approach to build territorial distributed storage system for high performance computing environment of UB RAS is presented. The storage system is based on the dCache middleware from the European Middleware Initiative project. The first milestone of distributed storage system implementation includes the data centers at the two UB RAS Regions: Yekaterinburg and Perm.
-
3D molecular dynamic simulation of thermodynamic equilibrium problem for heated nickel
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 573-579Views (last year): 2.This work is devoted to molecular dynamic modeling of the thermal impact processes on the metal sample consisting of nickel atoms. For the solution of this problem, a continuous mathematical model on the basis of the classical Newton mechanics equations has been used; a numerical method based on the Verlet scheme has been chosen; a parallel algorithm has been offered, and its realization within the MPI and OpenMP technologies has been executed. By means of the developed parallel program, the investigation of thermodynamic equilibrium of nickel atoms’ system under the conditions of heating a sample to desired temperature has been executed. In numerical experiments both optimum parameters of calculation procedure and physical parameters of analyzed process have been defined. The obtained numerical results are well corresponding to known theoretical and experimental data.
-
A CPU benchmarking characterization of ARM based processors
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586Views (last year): 1.Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.
-
Memory benchmarking characterisation of ARM-based SoCs
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 607-613Computational intensity is traditionally the focus of large-scale computing system designs, generally leaving such designs ill-equipped to efficiently handle throughput-oriented workloads. In addition, cost and energy consumption considerations for large-scale computing systems in general remain a source of concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of four different models of ARM-based system-on-chip, namely the Cortex-A9, Cortex- A7, Cortex-A15 r3p2 and Cortex-A15 r3p3. We then discuss the relevance of these results to high volume computing and the potential for ARM processors.
-
The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630Views (last year): 2.The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.
-
XFEL diffraction patterns representation method for classification, indexing and search
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 631-639Views (last year): 6.The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and bluetongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"