Результаты поиска по 'design':
Найдено статей: 99
  1. Abramov V.S., Petrov M.N.
    Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090

    Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, $e^N$ method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.

    The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the $e^N$ method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the $e^N$ method. This indicates the prospects for using the described approach in a real world applications.

  2. Dmitrienko P.V.
    Methods of evaluating the effectiveness of systems for computing resources monitoring
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 661-668

    This article discusses the contribution of computing resources monitoring system to the work of a distributed computing system. Method of evaluation of this contribution and performance monitoring system based on measures of certainty the state-controlled system is proposed. The application of this methodology in the design and development of local monitoring of the Central Information and Computing Complex, Joint Institute for Nuclear Research is listed.

    Views (last year): 2. Citations: 2 (RSCI).
  3. The paper presents the results of applying a scheme of very high accuracy and resolution to obtain numerical solutions of the Navier – Stokes equations of a compressible gas describing the occurrence and development of instability of a two-dimensional laminar boundary layer on a flat plate. The peculiarity of the conducted studies is the absence of commonly used artificial exciters of instability in the implementation of direct numerical modeling. The multioperator scheme used made it possible to observe the subtle effects of the birth of unstable modes and the complex nature of their development caused presumably by its small approximation errors. A brief description of the scheme design and its main properties is given. The formulation of the problem and the method of obtaining initial data are described, which makes it possible to observe the established non-stationary regime fairly quickly. A technique is given that allows detecting flow fluctuations with amplitudes many orders of magnitude smaller than its average values. A time-dependent picture of the appearance of packets of Tollmien – Schlichting waves with varying intensity in the vicinity of the leading edge of the plate and their downstream propagation is presented. The presented amplitude spectra with expanding peak values in the downstream regions indicate the excitation of new unstable modes other than those occurring in the vicinity of the leading edge. The analysis of the evolution of instability waves in time and space showed agreement with the main conclusions of the linear theory. The numerical solutions obtained seem to describe for the first time the complete scenario of the possible development of Tollmien – Schlichting instability, which often plays an essential role at the initial stage of the laminar-turbulent transition. They open up the possibilities of full-scale numerical modeling of this process, which is extremely important for practice, with a similar study of the spatial boundary layer.

  4. Reed R.G., Cox M.A., Wrigley T., Mellado B.
    A CPU benchmarking characterization of ARM based processors
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586

    Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.

    Views (last year): 1.
  5. Wrigley T., Reed R.G., Mellado B.
    Memory benchmarking characterisation of ARM-based SoCs
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 607-613

    Computational intensity is traditionally the focus of large-scale computing system designs, generally leaving such designs ill-equipped to efficiently handle throughput-oriented workloads. In addition, cost and energy consumption considerations for large-scale computing systems in general remain a source of concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of four different models of ARM-based system-on-chip, namely the Cortex-A9, Cortex- A7, Cortex-A15 r3p2 and Cortex-A15 r3p3. We then discuss the relevance of these results to high volume computing and the potential for ARM processors.

  6. Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V., Uzhinskiy A.V.
    Synthesis of the simulation and monitoring processes for the development of big data storage and processing facilities in physical experiments
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 691-698

    The paper presents a new grid and cloud services simulation system. This system is developed in LIT JINR, Dubna, and it is aimed at improving the efficiency of the grid-cloud systems development by using work quality indicators of some real system to design and predict its evolution. For these purpose, simulation program is combined with real monitoring system of the grid-cloud service through a special database. The paper provides an example of the program usage to simulate a sufficiently general cloud structure, which can be used for more common purposes.

    Views (last year): 4. Citations: 6 (RSCI).
  7. Lotarev D.T.
    Allocation of steinerpoints in euclidean Steiner tree problem by means of MatLab package
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 707-713

    The problem of allocation of Steiner points in Euclidean Steiner Tree is considered. The cost of network is sum of building costs and cost of the information transportation. Euclidean Steiner tree problem in the form of topological network design is a good model of this problem.

    The package MatLab has the way to solve the second part of this problem — allocate Steiner points under condition that the adjacency matrix is set. The method to get solution has been worked out. The Steiner tree is formed by means of solving of the sequence of "three points" Steiner

    Views (last year): 4.
  8. Oleynikov B.V., Shalabay A.I.
    Crowd funding in the construction of distributed grid-system of electronic library and internet resources
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 715-718

    In the design of a distributed library system, there are a lot of organizational problems, ideas, solutions which are the subject of this article. The article presents the approaches on crowd funding platforms that are used as a tool for attracting participants and financing project.

    Views (last year): 1.
  9. Degtyarev A.B., Yezhakova T.R., Khramushin V.N.
    Algorithmic construction of explicit numerical schemes and visualization of objects and processes in the computational experiment in fluid mechanics
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 767-774

    The paper discusses the design and verification stages in the development of complex numerical algorithms to create direct computational experiments in fluid mechanics. The modeling of physical fields and nonstationary processes of continuum mechanics, it is desirable to rely on strict rules of construction the numerical objects and related computational algorithms. Synthesis of adaptive the numerical objects and effective arithmetic- logic operations can serve to optimize the whole computing tasks, provided strict following and compliance with the original of the laws of fluid mechanics. The possibility of using ternary logic enables to resolve some contradictions of functional and declarative programming in the implementation of purely applied problems of mechanics. Similar design decisions lead to new numerical schemes tensor mathematics to help optimize effectiveness and validate correctness the simulation results. The most important consequence is the possibility of using interactive graphical techniques for the visualization of intermediate results of modeling, as well as managed to influence the course of computing experiment under the supervision of engineers aerohydrodynamics– researchers.

    Views (last year): 1.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"