Результаты поиска по 'discrete models':
Найдено статей: 78
  1. Zubkova E.V., Zhukova L.A., Frolov P.V., Shanin V.N.
    A.S. Komarov’s publications about cellular automata modelling of the population-ontogenetic development in plants: a review
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 285-295

    The possibilities of cellular automata simulation applied to herbs and dwarf shrubs are described. Basicprinciples of discrete description of the ontogenesis of plants on which the mathematical modeling based are presents. The review discusses the main research results obtained with the use of models that revealing the patterns of functioning of populations and communities. The CAMPUS model and the results of computer experiment to study the growth of two clones of lingonberry with different geometry of the shoots are described. The paper is dedicated to the works of the founder of the direction of prof. A. S. Komarov. A list of his major publications on this subject is given.

    Views (last year): 2. Citations: 6 (RSCI).
  2. Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.

    Views (last year): 1. Citations: 4 (RSCI).
  3. Cherednichenko A.I., Zakharov P.V., Starostenkov M.D., Sysoeva M.O., Eremin A.M.
    Nonlinear supratransmission in a Pt3Al crystal at intense external influence
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117

    The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.

    Views (last year): 18.
  4. Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

  5. Bozhko A.N.
    Hypergraph approach in the decomposition of complex technical systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1007-1022

    The article considers a mathematical model of decomposition of a complex product into assembly units. This is an important engineering problem, which affects the organization of discrete production and its operational management. A review of modern approaches to mathematical modeling and automated computer-aided of decompositions is given. In them, graphs, networks, matrices, etc. serve as mathematical models of structures of technical systems. These models describe the mechanical structure as a binary relation on a set of system elements. The geometrical coordination and integrity of machines and mechanical devices during the manufacturing process is achieved by means of basing. In general, basing can be performed on several elements simultaneously. Therefore, it represents a variable arity relation, which can not be correctly described in terms of binary mathematical structures. A new hypergraph model of mechanical structure of technical system is described. This model allows to give an adequate formalization of assembly operations and processes. Assembly operations which are carried out by two working bodies and consist in realization of mechanical connections are considered. Such operations are called coherent and sequential. This is the prevailing type of operations in modern industrial practice. It is shown that the mathematical description of such operation is normal contraction of an edge of the hypergraph. A sequence of contractions transforming the hypergraph into a point is a mathematical model of the assembly process. Two important theorems on the properties of contractible hypergraphs and their subgraphs proved by the author are presented. The concept of $s$-hypergraphs is introduced. $S$-hypergraphs are the correct mathematical models of mechanical structures of any assembled technical systems. Decomposition of a product into assembly units is defined as cutting of an $s$-hypergraph into $s$-subgraphs. The cutting problem is described in terms of discrete mathematical programming. Mathematical models of structural, topological and technological constraints are obtained. The objective functions are proposed that formalize the optimal choice of design solutions in various situations. The developed mathematical model of product decomposition is flexible and open. It allows for extensions that take into account the characteristics of the product and its production.

  6. Yanbarisov R.M.
    Parallel embedded discrete fracture method for flows in fractured porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 735-745

    In this work, parallel method for solving single-phase flow problems in a fractured porous media is considered. Method is based on the representation of fractures by surfaces embedded into the computational mesh, and known as the embedded discrete fracture model. Porous medium and fractures are represented as two independent continua within the model framework. A distinctive feature of the considered approach is that fractures do not modify the computational grid, while an additional degree of freedom is introduced for each cell intersected by the fracture. Discretization of fluxes between fractures and porous medium continua uses the pre-calculated intersection characteristics of fracture surfaces with a three-dimensional computational grid. The discretization of fluxes inside a porous medium does not depend on flows between continua. This allows the model to be integrated into existing multiphase flow simulators in porous reservoirs, while accurately describing flow behaviour near fractures.

    Previously, the author proposed monotonic modifications of the model using nonlinear finite-volume schemes for the discretization of the fluxes inside the porous medium: a monotonic two-point scheme or a compact multi-point scheme with a discrete maximum principle. It was proved that the discrete solution of the obtained nonlinear problem preserves non-negativity or satisfies the discrete maximum principle, depending on the choice of the discretization scheme.

    This work is a continuation of previous studies. The previously proposed monotonic modification of the model was parallelized using the INMOST open-source software platform for parallel numerical modelling. We used such features of the INMOST as a balanced grid distribution among processors, scalable methods for solving sparse distributed systems of linear equations, and others. Parallel efficiency was demonstrated experimentally.

  7. Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

  8. Podlipnova I.V., Persiianov M.I., Shvetsov V.I., Gasnikova E.V.
    Transport modeling: averaging price matrices
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 317-327

    This paper considers various approaches to averaging the generalized travel costs calculated for different modes of travel in the transportation network. The mode of transportation is understood to mean both the mode of transport, for example, a car or public transport, and movement without the use of transport, for example, on foot. The task of calculating the trip matrices includes the task of calculating the total matrices, in other words, estimating the total demand for movements by all modes, as well as the task of splitting the matrices according to the mode, also called modal splitting. To calculate trip matrices, gravitational, entropy and other models are used, in which the probability of movement between zones is estimated based on a certain measure of the distance of these zones from each other. Usually, the generalized cost of moving along the optimal path between zones is used as a distance measure. However, the generalized cost of movement differs for different modes of movement. When calculating the total trip matrices, it becomes necessary to average the generalized costs by modes of movement. The averaging procedure is subject to the natural requirement of monotonicity in all arguments. This requirement is not met by some commonly used averaging methods, for example, averaging with weights. The problem of modal splitting is solved by applying the methods of discrete choice theory. In particular, within the framework of the theory of discrete choice, correct methods have been developed for averaging the utility of alternatives that are monotonic in all arguments. The authors propose some adaptation of the methods of the theory of discrete choice for application to the calculation of the average cost of movements in the gravitational and entropy models. The transfer of averaging formulas from the context of the modal splitting model to the trip matrix calculation model requires the introduction of new parameters and the derivation of conditions for the possible value of these parameters, which was done in this article. The issues of recalibration of the gravitational function, which is necessary when switching to a new averaging method, if the existing function is calibrated taking into account the use of the weighted average cost, were also considered. The proposed methods were implemented on the example of a small fragment of the transport network. The results of calculations are presented, demonstrating the advantage of the proposed methods.

  9. Fomina E.E., Zhiganov N.K.
    Computer modeling and visualization of discrete-continuous casting of nonferrous metal and alloys
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 67-75

    This article is devoted to the problem of mathematical modeling of nonferrous metal casting and investigation of the influence of main technological parameters on the cooling process of continuously casted copper under down-draw and up-draw.

    Views (last year): 3. Citations: 1 (RSCI).
  10. Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Views (last year): 2. Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"