Результаты поиска по 'distributed systems':
Найдено статей: 118
  1. Kholodkov K.I., Aleshin I.M.
    Exact calculation of a posteriori probability distribution with distributed computing systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542

    We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.

    Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.

    The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.

    The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.

    Views (last year): 3.
  2. Kuklin E.Yu., Sozykin A.V., Bersenev A.Yu., Masich G.F.
    Distributed dCache-based storage system of UB RAS
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 559-563

    The approach to build territorial distributed storage system for high performance computing environment of UB RAS is presented. The storage system is based on the dCache middleware from the European Middleware Initiative project. The first milestone of distributed storage system implementation includes the data centers at the two UB RAS Regions: Yekaterinburg and Perm.

    Citations: 3 (RSCI).
  3. Berezhnaya A.Ya., Velikhov V.E., Lazin Y.A., Lyalin I.N., Ryabinkin E.A., Tkachenko I.A.
    The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630

    The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.

    Views (last year): 2.
  4. Kazymov A.I., Kotov V.M., Mineev M.A., Russakovich N.A., Yakovlev A.V.
    Using CERN cloud technologies for the further ATLAS TDAQ software development and for its application for the remote sensing data processing in the space monitoring tasks
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 683-689

    The CERN cloud technologies (the CernVM project) give a new possibility for the software developers. The participation of the JINR ATLAS TDAQ working group in the software development for distributed data acquisition and processing system (TDAQ) of the ATLAS experiment (CERN) involves the work in the condition of the dynamically developing system and its infrastructure. The CERN cloud technologies, especially CernVM, provide the most effective access as to the TDAQ software as to the third-part software used in ATLAS. The access to the Scientific Linux environment is provided by CernVM virtual machines and the access software repository — by CernVM-FS. The problem of the functioning of the TDAQ middleware in the CernVM environment was studied in this work. The CernVM usage is illustrated on three examples: the development of the packages Event Dump and Webemon, and the adaptation of the data quality auto checking system of the ATLAS TDAQ (Data Quality Monitoring Framework) for the radar data assessment.

    Views (last year): 2.
  5. Oleynikov B.V., Shalabay A.I.
    Crowd funding in the construction of distributed grid-system of electronic library and internet resources
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 715-718

    In the design of a distributed library system, there are a lot of organizational problems, ideas, solutions which are the subject of this article. The article presents the approaches on crowd funding platforms that are used as a tool for attracting participants and financing project.

    Views (last year): 1.
  6. Smirnov S.A., Voloshinov V.V.
    Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725

    The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.

    Views (last year): 2. Citations: 2 (RSCI).
  7. Ustimenko O.V.
    Features DIRAC data management
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 741-744

    The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.

    The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.

    Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.

    Views (last year): 2.
  8. Molecular dynamic methods that use ReaxFF force field allow one to obtain sufficiently good results in simulating large multicomponent chemically reactive systems. Here is represented an algorithm of searching optimal parameters of molecular-dynamic force field ReaxFF for arbitrary chemical systems and its implementation. The method is based on the multidimensional technique of global minimum search suggested by R.G. Strongin. It has good scalability useful for running on distributed parallel computers.

    Views (last year): 1. Citations: 1 (RSCI).
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"