All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Views (last year): 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
-
Tracking on the BESIII CGEM inner detector using deep learning
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.
The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.
In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.
The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.
-
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
Simulation of lightning initiation on the basis of dynamical grap
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.
-
Approach to Estimating the Dynamics of the Industry Consolidation Level
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 129-140In this article we propose a new approach to the analysis of econometric industry parameters for the industry consolidation level. The research is based on the simple industry automatic control model. The state of the industry is measured by quarterly obtained econometric parameters from each industry’s company provided by the tax control regulator. An approach to analysis of the industry, which does not provide for tracking the economy of each company, but explores the parameters of the set of all companies as a whole, is proposed. Quarterly obtained econometric parameters from each industry’s company are Income, Quantity of employers, Taxes, and Income from Software Licenses. The ABC analysis method was modified by ABCD analysis (D — companies with zero-level impact to industry metrics) and used to make the results obtained for different indicators comparable. Pareto charts were formed for the set of econometric indicators.
To estimate the industry monopolization, the Herfindahl – Hirschman index was calculated for the most sensitive companies metrics. Using the HHI approach, it was proved that COVID-19 does not lead to changes in the monopolization of the Russian IT industry.
As the most visually obvious approach to the industry visualization, scattering diagrams in combination with the Pareto graph colors were proposed. The affect of the accreditation procedure is clearly observed by scattering diagram in combination with red/black dots for accredited and nonaccredited companies respectively.
The last reported result is the proposal to use the Licenses End-to-End Product Identification as the market structure control instrument. It is the basis to avoid the multiple accounting of the licenses reselling within the chain of software distribution.
The results of research could be the basis for future IT industry analysis and simulation on the agent based approach.
-
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
-
Motion control by a highly maneuverable mobile robot in the task of following an object
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.
-
Double layer interval weighted graphs in assessing the market risks
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 159-166Views (last year): 2. Citations: 1 (RSCI).This scientific work is dedicated to applying of two-layer interval weighted graphs in nonstationary time series forecasting and evaluation of market risks. The first layer of the graph, formed with the primary system training, displays potential system fluctuations at the time of system training. Interval vertexes of the second layer of the graph (the superstructure of the first layer) which display the degree of time series modeling error are connected with the first layer by edges. The proposed model has been approved by the 90-day forecast of steel billets. The average forecast error amounts 2,6 % (it’s less than the average forecast error of the autoregression models).
-
Simulation of corruption in hierarchical systems
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 321-329Views (last year): 8. Citations: 11 (RSCI).Simulation model of corruption in hierarchical systems which takes into account individual strategies of elements and collective behavior of large groups is proposed. Evolution of various characteristics like level of corruption or ratio of corrupted elements and their dependence on external parameters are discussed. The effectiveness of various anticorruptional strategies is examined by means of numeric analysis.
-
Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.
Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"