All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
The implicit line-by-line recurrence method in application to the solution of problems of incompressible viscous fluid dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 35-50Views (last year): 3. Citations: 3 (RSCI).In the paper the results of applying the implicit line-by-line recurrence method for solving of systems of elliptic difference equations, arising, in particular, at numerical simulation of dynamics of incompressible viscous fluid are considered. Research is conducted on the example of the problem about a steady-state two-dimensional lid-driven cavity flow formulated in primitive variables ($u,\, v,\, p$) for large Re (up to 20 000) and grids (up to 2049×2049). High efficiency of the method at calculation of a pressure correction fields is demonstrated. The difficulties of constructing a solution of the problem for large Rе are analyzed.
-
Statistical analysis of Margolus’s block-rotating mechanism cellular automation modeling the diffusion in a medium with discrete singularities
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1155-1175Views (last year): 8. Citations: 4 (RSCI).The generalization of Margolus’s block cellular automaton on a hexagonal grid is formulated. Statistical analysis of the results of probabilistic cellular automation for vast variety of this scheme solving the test task of diffusion is done. It is shown that the choice of the hexagon blocks is 25% more efficient than Y-blocks. It is shown that the algorithms have polynomial complexity, and the polynom degree lies within 0.6÷0.8 for parallel computer, and in the range 1.5÷1.7 for serial computer. The effects of embedded into automaton’s field defective cells on the rate of convergence are studied also.
-
FlowVision: Industrial computational fluid dynamics
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20Views (last year): 30. Citations: 8 (RSCI).The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.
The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.
FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.
-
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 2
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 547-566Views (last year): 6.The second part of paper is devoted to final study of three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Specificity of this solution has been shown by different examples, which are related to the hexagonal grid. Also the next statements that are mentioned in the first part have been proved: the matter conservation law and the offensive effect of excessive hexagonal symmetry.
From the point of CA view diffusion equation is the most important. While solving of diffusion equation at the infinite time interval we can find solution of boundary value problem of Laplace equation and if we introduce vector-variable we will solve wave equation (at least, for scalar). The critical requirement for the sampling of the boundary conditions for CA-cells has been shown during the solving of problem of circular membrane vibrations with Neumann boundary conditions. CA-calculations using the simple scheme and Margolus rotary-block mechanism were compared for the quasione-dimensional problem “diffusion in the half-space”. During the solving of mixed task of circular membrane vibration with the fixed ends in a classical case it has been shown that the simultaneous application of the Crank–Nicholson method and taking into account of the second-order terms is allowed to avoid the effect of excessive hexagonal symmetry that was studied for a simple scheme.
By the example of the centrally symmetric Neumann problem a new method of spatial derivatives introducing into the postfix CA procedure, which is reflecting the time derivatives (on the base of the continuity equation) was demonstrated. The value of the constant that is related to these derivatives has been empirically found in the case of central symmetry. The low rate of convergence and accuracy that limited within the boundaries of the sample, in contrary to the formal precision of the method (4-th order), prevents the using of the CAmethods for such problems. We recommend using multigrid method. During the solving of the quasi-diffusion equations (two-dimensional CA) it was showing that the rotary-block mechanism of CA (Margolus mechanism) is more effective than simple CA.
-
On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880Views (last year): 15. Citations: 1 (RSCI).In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.
The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.
-
Simulation of turbulent compressible flows in the FlowVision software
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825Simulation of turbulent compressible gas flows using turbulence models $k-\varepsilon$ standard (KES), $k-\varepsilon$ FlowVision (KEFV) and SST $k-\omega$ is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.
In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.
-
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 167-186Views (last year): 6.The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.
It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.
The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.
-
CABARET scheme implementation for free shear layer modeling
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903Views (last year): 17.In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.
The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods
-
Finite difference schemes for linear advection equation solving under generalized approximation condition
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193Views (last year): 27.A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.
The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.
Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.
The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"