Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1

 pdf (1319K)  / List of references

The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.

It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.

The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.

Keywords: cellular automata with continuous values, hexagonal grid, finite-difference methods, partial differential equations, PDEs
Citation in English: Matyushkin I.V. Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1 // Computer Research and Modeling, 2017, vol. 9, no. 2, pp. 167-186
Citation in English: Matyushkin I.V. Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1 // Computer Research and Modeling, 2017, vol. 9, no. 2, pp. 167-186
DOI: 10.20537/2076-7633-2017-9-2-167-186
Views (last year): 6.

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the List of Russian peer-reviewed journals publishing the main research results of PhD and doctoral dissertations.

International Interdisciplinary Conference "Mathematics. Computing. Education"

The journal is included in the RSCI

Indexed in Scopus