All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Forecasting the labor force dynamics in a multisectoral labor market
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 235-250The article considers the problem of forecasting the number of employed and unemployed persons in a multisectoral labor market using a balance mathematical model of labor force intersectoral dynamics.
The balance mathematical model makes it possible to calculate the values of intersectoral dynamics indicators using only statistical data on sectoral employment and unemployment provided by the Federal State Statistics Service. Intersectoral dynamics indicators of labor force calculated for several years in a row are used to build trends for each of these indicators. The found trends are used to calculation of forecasted intersectoral dynamics indicators of labor force. The sectoral employment and unemployment of researched multisectoral labor market is forecasted based on values these forecasted indicators.
The proposed approach was applied to forecast the employed persons in the economic sectors of the Russian Federation in 2011–2016. The following types of trends were used to describe changes of intersectoral dynamics indicators values: linear, non-linear, constant. The procedure for selecting trends is clearly demonstrated by the example of indicators that determine the labor force movements from the “Transport and communications” sector to the “Healthcare and social services” sector, as well as from the “Public administration and military security, social security” sector to the “Education” sector.
Several approaches to forecasting was compared: a) naive forecast, within which the labor market indicators was forecasted only using a constant trend; b) forecasting based on a balance model using only a constant trend for all intersectoral dynamics indicators of labor force; c) forecasting directly by the number employed persons in economic sectors using the types of trends considered in the article; d) forecasting based on a balance model with the trends choice for each intersectoral dynamics indicators of labor force.
The article shows that the use of a balance model provides a better forecast quality compared to forecasting directly by the number of employed persons. The use of trends in intersectoral dynamics indicators improves the quality of the forecast. The article also provides analysis examples of the multisectoral labor market in the Russian Federation. Using the balance model, the following information was obtained: the labor force flows distribution outgoing from concrete sectors by sectors of the economy; the sectoral structure of the labor force flows ingoing in concrete sectors. This information is not directly contained in the data provided by the Federal State Statistics Service.
-
Approximate methods of studying dynamics of market structure
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 219-229Views (last year): 3. Citations: 9 (RSCI).An approach to computation of open-loop optimal Nash–Cournot strategies in dynamical games which is based on the Z-transform method and factorization is proposed. The main advantage of the proposed approach is that it permits to overcome the problems of instability of economic indicators of oligopolies arising when generalized Riccati equations are used.
-
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"