Результаты поиска по 'mathematical modeling':
Найдено статей: 324
  1. Vaidehi P., Sasikumar J.
    Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431

    The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.

  2. Jeeva N., Dharmalingam K.M.
    Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753

    Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.

  3. Belyaev A.V.
    Stochastic transitions from order to chaos in a metapopulation model with migration
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973

    This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.

  4. Vasenin I.M., Krainov A.Y., Isaychenkov A.B.
    Mathematical modeling of drying of coal particles in the gas stream
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 357-367

    Physical-mathematical model of drying of coal particles in the gas stream and the results of calculating the drying of the particles of brown coal in a drying tube are presented. It is shown that for the drying of coal can be used superheated water vapor. Thermodynamic model of drying of a particle in a drying tube are proposed. It allows to conduct a preliminary assessment of parameters of drying process.

    Citations: 2 (RSCI).
  5. Abakumov A.I., Izrailsky Y.G.
    Model method of vertical chlorophyll concentration reconstruction from satellite data
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 473-482

    A model, describing the influence of external factors on temporal evolution of phytoplankton distribution in a horizontally-homogenous water layer, is presented. This model is based upon the reactiondiffusion equation and takes into account the main factors of influence: mineral nutrients, insolation and temperature. The mineral nutrients and insolation act oppositely on spatial phytoplankton distribution. The results of numerical modeling are presented and the prospect of applying this model to reconstruction of phytoplankton distribution from sea-surface satellite data is discussed. The model was used to estimate the chlorophyll content of the Peter the Great Bay (Sea of Japan).

    Views (last year): 5. Citations: 2 (RSCI).
  6. Trifonova T.A., Sheremet M.A.
    Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 623-634

    Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.

    Views (last year): 1. Citations: 4 (RSCI).
  7. Polosin A.N., Chistyakova T.B.
    Modeling system of extrusion and forming polymeric materials for blown film quality control
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 137-158

    Flexible software for modeling polymeric film production by use of blown extrusion has been developed. It consists of library of mathematical models for extrusion and forming blown film, sub-system for changeover to new type of film and sub-system for investigation of extrusion and forming for film quality control under film production. The sub-system for changeover allows to choose the equipment of extrusion line on technical and economic indices, to synthesize 3D model of the line and to generate regulation ranges of regime parameters for given type of film. The sub-system for investigation allows to calculate temperature profiles of heating and cooling material, geometrical and optical characteristics of film depending on regime parameters for stages of extrusion and forming and to evaluate regime parameters ensuring given quality of polymeric film.

    Views (last year): 7. Citations: 3 (RSCI).
  8. Okhapkin V.P.
    Optimal control of the commercial bank investment including the reinvestment processes
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 309-319

    Article is devoted to the creation of a mathematical control of the bank investment process. The whole process of building optimal control may be divided into two components: in the first place, there is the identification of the functions describing the liquid capital movement in the bank and, in the second place, the use of these functions in the scheme of dynamic programming. Before this problem was discussed in the article "Optimal control of the bank investment as a factor of economic stability" in the 4th issue for 2012. In the present article considers this modification of the solution, in particular, we use ℜ(φ) as a function of reinvestment, where φ is inflow of liquid capital realized at the previous step of control.

    Views (last year): 6. Citations: 1 (RSCI).
  9. Bratsun D.A., Zakharov A.P., Pismen L.M.
    Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604

    In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.

    Views (last year): 10. Citations: 12 (RSCI).
  10. Potapov I.I., Snigur K.S.
    Modeling of sand-gravel bed evolution in one-dimension
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 315-328

    In the paper the model for a one-dimensional non-equilibrium riverbed process is proposed. The model takes into account the suspended and bed-load sediment transport. The bed-load transport is determined by using the original formula. This formula was derived from the thin bottom layer motion equation. The formula doesn’t contain new phenomenological parameters and takes into account the influence of bed slope, granulometric and physical mechanical parameters on the bed-load transport. A number of the model test problems are solved for the verification of the proposed mathematical model. The comparison of the calculation results with the established experimental data and the results of other authors is made. It was shown, that the obtained results have a good agreement with the experimental data in spite of the relative simplicity of the proposed mathematical model.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"