Результаты поиска по 'mathematical models':
Найдено статей: 324
  1. Martyushev S.G., Sheremet M.A.
    Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396

    Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.

    Views (last year): 1. Citations: 5 (RSCI).
  2. Kholodov Y.A., Alekseenko A.E., Vasilev M.O., Kholodov A.S.
    Developing the mathematical model of road junction by the hydrodynamic approach
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 503-522

    The purpose of this paper is to develop a macroscopic hydrodynamic model describing the vehicular traffic on a road junction and taking into account the distribution of traffic light phases and the existing road markings.

    Views (last year): 4.
  3. Alekseenko A.E., Kholodov Y.A., Kholodov A.S., Goreva A.I., Vasilev M.O., Chekhovich Y.V., Mishin V.D., Starozhilets V.M.
    Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part I
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1185-1203

    In this paper, we propose the unified procedure for the development and calibration of mathematical model for multilane urban road traffic flow. We use macroscopic approach, describing traffic flow with the system of second-order nonlinear hyperbolic equations (for traffic density and velocity). We close the resulting model with the equation of vehicle flow as a function of density, obtained empirically for each segment of road network using data from traffic detectors and vehicles’ GPS tracks. We verify the developed new model and calibration methods by using it to model segment of Moscows Ring Road.

    Views (last year): 4. Citations: 2 (RSCI).
  4. Safiullina L.F., Gubaydullin I.M.
    Research and reduction of mathematical model of chemical reaction by Sobol’ method
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 633-646

    The technique of simplification of mathematical model of a chemical reaction by reducing the number of steps of the reaction scheme, based on an analysis of sensitivity to changes in the objective function of the model parameters, is proposed. The reduced scheme of model reaction of formaldehyde oxidation is received. Functional characterizes the measure of proximity to the calculated values for the initial kinetic reaction scheme and the scheme resulting disturbance of its parameters. The advantage of this technique is the ability to analyze complex kinetic schemes and reduction of kinetic models to a size suitable for practical use. The results of computational experiments under different reaction conditions can be included in the functional and thus to receive the reduce scheme, which is consistent the detailed scheme for the desired range of conditions. Sensitivity analysis of the functional model allows to identify those parameters, which provide the largest (or smallest) the contribution to the result of the process simulation. The mathematical model can contain parameters, which change of values do not affect the qualitative and quantitative description of the process. The contribution of these parameters in the functional value won’t be of great importance. Thus it can be eliminated from consideration, which do not serve for modeling kinetic curves substances. The kinetic scheme of formaldehyde oxidation, the detailed mechanism which includes 25 stages and 15 substances, were investigated using this method. On the basis of the local and global sensitivity analysis, the most important stage of the process that affect the overall dynamics of the target concentrations of the reaction. The reduced scheme of model reaction of formaldehyde oxidation is received. This scheme also describes the behavior of the main substances, as detailed scheme, but has a much smaller number of reaction stages. The results of the comparative analysis of modeling of formaldehyde oxidation on detailed and reduced schemes are given. Computational aspects of the problems of chemical kinetics by Sobol’ global method an example of this reaction are specified. The comparison results are local, global and total sensitivity indices are given.

    Views (last year): 10. Citations: 4 (RSCI).
  5. Efficiency of production directly depends on quality of the management of technology which, in turn, relies on the accuracy and efficiency of the processing of control and measuring information. Development of the mathematical methods of research of the system communications and regularities of functioning and creation of the mathematical models taking into account structural features of object of researches, and also writing of the software products for realization of these methods are an actual task. Practice has shown that the list of parameters that take place in the study of complex object of modern production, ranging from a few dozen to several hundred names, and the degree of influence of each factor in the initial time is not clear. Before working for the direct determination of the model in these circumstances, it is impossible — the amount of the required information may be too great, and most of the work on the collection of this information will be done in vain due to the fact that the degree of influence on the optimization of most factors of the original list would be negligible. Therefore, a necessary step in determining a model of a complex object is to work to reduce the dimension of the factor space. Most industrial plants are hierarchical group processes and mass volume production, characterized by hundreds of factors. (For an example of realization of the mathematical methods and the approbation of the constructed models data of the Moldavian steel works were taken in a basis.) To investigate the systemic linkages and patterns of functioning of such complex objects are usually chosen several informative parameters, and carried out their sampling. In this article the sequence of coercion of the initial indices of the technological process of the smelting of steel to the look suitable for creation of a mathematical model for the purpose of prediction is described. The implementations of new types became also creation of a basis for development of the system of automated management of quality of the production. In the course of weak correlation the following stages are selected: collection and the analysis of the basic data, creation of the table the correlated of the parameters, abbreviation of factor space by means of the correlative pleiads and a method of weight factors. The received results allow to optimize process of creation of the model of multiple-factor process.

    Views (last year): 6. Citations: 1 (RSCI).
  6. Khazova Y.A.
    Traveling waves in a parabolic problem with a rotation on the circle
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716

    Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.

    A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.

    The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.

    Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.

    Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.

    Views (last year): 11. Citations: 5 (RSCI).
  7. Maksimova O.V., Grigoryev V.I.
    Four-factor computing experiment for the random walk on a two-dimensional square field
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 905-918

    Nowadays the random search became a widespread and effective tool for solving different complex optimization and adaptation problems. In this work, the problem of an average duration of a random search for one object by another is regarded, depending on various factors on a square field. The problem solution was carried out by holding total experiment with 4 factors and orthogonal plan with 54 lines. Within each line, the initial conditions and the cellular automaton transition rules were simulated and the duration of the search for one object by another was measured. As a result, the regression model of average duration of a random search for an object depending on the four factors considered, specifying the initial positions of two objects, the conditions of their movement and detection is constructed. The most significant factors among the factors considered in the work that determine the average search time are determined. An interpretation is carried out in the problem of random search for an object from the constructed model. The important result of the work is that the qualitative and quantitative influence of initial positions of objects, the size of the lattice and the transition rules on the average duration of search is revealed by means of model obtained. It is shown that the initial neighborhood of objects on the lattice does not guarantee a quick search, if each of them moves. In addition, it is quantitatively estimated how many times the average time of searching for an object can increase or decrease with increasing the speed of the searching object by 1 unit, and also with increasing the field size by 1 unit, with different initial positions of the two objects. The exponential nature of the growth in the number of steps for searching for an object with an increase in the lattice size for other fixed factors is revealed. The conditions for the greatest increase in the average search duration are found: the maximum distance of objects in combination with the immobility of one of them when the field size is changed by 1 unit. (that is, for example, with $4 \times 4$ at $5 \times 5$) can increase the average search duration in $e^{1.69} \approx 5.42$. The task presented in the work may be relevant from the point of view of application both in the landmark for ensuring the security of the state, and, for example, in the theory of mass service.

    Views (last year): 21.
  8. Krat Y.G., Potapov I.I.
    Movement of sediment over periodic bed
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 47-60

    The movement of bed load along the closed conduit can lead to a loss of stability of the bed surface, when bed waves arise at the bed of the channel. Investigation of the development of bed waves is associated with the possibility of determining of the bed load nature along the bed of the periodic form. Despite the great attention of many researchers to this problem, the question of the development of bed waves remains open at the present time. This is due to the fact that in the analysis of this process many researchers use phenomenological formulas for sediment transport in their work. The results obtained in such models allow only assess qualitatly the development of bed waves. For this reason, it is of interest to carry out an analysis of the development of bed waves using the analytical model for sediment transport.

    The paper proposed two-dimensional profile mathematical riverbed model, which allows to investigate the movement of sediment over a periodic bed. A feature of the mathematical model is the possibility of calculating the bed load transport according to an analytical model with the Coulomb–Prandtl rheology, which takes into account the influence of bottom surface slopes, bed normal and tangential stresses on the movement of bed material. It is shown that when the bed material moves along the bed of periodic form, the diffusion and pressure transport of bed load are multidirectional and dominant with respect to the transit flow. Influence of the effects of changes in wave shape on the contribution of transit, diffusion and pressure transport to the total sediment transport has been studied. Comparison of the received results with numerical solutions of the other authors has shown their good qualitative initiation.

    Views (last year): 9.
  9. Mikhailenko S.A., Sheremet M.A.
    Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207

    Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.

    Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.

    Views (last year): 20.
  10. Rukavishnikov V.A., Mosolapov A.O.
    Weighthed vector finite element method and its applications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86

    Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.

    For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.

    Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.

    Views (last year): 37.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"