All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 20.
-
Simulation of flight and destruction of the Benešov bolid
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618Views (last year): 24. Citations: 1 (RSCI).Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.
-
Estimation of natural frequencies of torsional vibrations of a composite nonlinearly viscoelastic shaft
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 421-430Views (last year): 27.The article presents a method for linearization the effective function of material instantaneous deformation in order to generalize the torsional vibration equation to the case of nonlinearly deformable rheologically active shafts. It is considered layered and structurally heterogeneous, on average isotropic shafts made of nonlinearly viscoelastic components. The technique consists in determining the approximate shear modulus by minimizing the root-mean-square deviation in approximation of the effective diagram of instantaneous deformation.
The method allows to estimate analytically values of natural frequencies of layered and structurally heterogeneous nonlinearly viscoelastic shaft. This makes it possible to significantly reduce resources in vibration analysis, as well as to track changes in values of natural frequencies with changing geometric, physico-mechanical and structural parameters of shafts, which is especially important at the initial stages of modeling and design. In addition, the paper shows that only a pronounced nonlinearity of the effective state equation has an effect on the natural frequencies, and in some cases the nonlinearity in determining the natural frequencies can be neglected.
As equations of state of the composite material components, the article considers the equations of nonlinear heredity with instantaneous deformation functions in the form of the Prandtl’s bilinear diagrams. To homogenize the state equations of layered shafts, it is applied the Voigt’s hypothesis on the homogeneity of deformations and the Reuss’ hypothesis on the homogeneity of stresses in the volume of a composite body. Using these assumptions, effective secant and tangential shear moduli, proportionality limits, as well as creep and relaxation kernels of longitudinal, axial and transversely layered shafts are obtained. In addition, it is obtained the indicated effective characteristics of a structurally heterogeneous, on average isotropic shaft using the homogenization method previously proposed by the authors, based on the determination of the material deformation parameters by the rule of a mixture for the Voigt’s and the Reuss’ state equations.
-
Import model of flexible woven composites in ANSYS Mechanical APDL
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 789-799Views (last year): 34.A variant of import into ANSYS Mechanical APDL system of the model of behavior of flexible woven composite materials with reinforcing weaving cloth of linen at static stretching along the reinforcement yarns is offered. The import was carried out using an integration module based on the use of an analytical model of deformation of the material under study. The model is presented in the articles published earlier and takes into account the changes in the geometric structure occurring in the reinforcing layer of the material during the deformation process, the formation of irreversible deformations and the interaction of cross-lying reinforcing fabric threads. In the introduction input characteristics of the plain weave of the reinforcing fabric and the analytical model imported into ANSYS are briefly described. The input parameters of the module are the mechanical characteristics of the materials that make up the composite (binder and material of reinforcement yarns), the geometric characteristics of the interlacing of the reinforcing fabric. The algorithm for importing the model is based on the calculation and transfer in ANSYS of the calculated points of the material stress-strain diagram for uniaxial stretching along the reinforcement direction and using the Multilinear Kinematich Hardening model material embedded in the ANSYS. The analytical model imported with the help of the presented module allows to model a composite material with reinforcing fabric without a detailed description of the geometry of the interlacing of threads during modeling of the material as a whole. The imported model was verified. For verification full-scale experimental studies and numerical simulation of the stretching of samples from flexible woven composites were carried out. The analysis of the obtained results showed good qualitative and quantitative agreement of calculations.
-
Deformation of shape memory rigid-plastic bodies under variable external loads and temperatures
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 63-77Under increasing loading and at a constant temperature shape memory solids become deformed in an ideal elastic plastic way as other metals, and the maximum elastic strains are much less than the ultimate plastic ones. The shape is restored at the elevated temperature and low stress level. Phenomenologically, the «reverse» deformation is equivalent to the change in shape under active loading up to sign. Plastic deformation plays a leading role in a non-elastic process; thus, the mechanical behavior should be analyzed within the ideal rigid-plastic model with two loading surfaces. In this model two physical states of the material correspond to the loading surfaces: plastic flow under high stresses and melting at a relatively low temperature. The second section poses a problem of deformation of rigid-plastic bodies at the constant temperature in two forms: as a principle of virtual velocities with the von Mises yield condition and as a requirement of the minimum dissipative functionаl. The equivalence of the accepted definitions and the existence of the generalized solutions is proved for both principles. The third section studies the rigid-plastic model of the solid at the variable temperature with two loading surfaces. For the assumed model two optimal principles are defined that link the external loads and the displacement velocities of the solid points both under active loading and in the process of shape restoration under heating. The existence of generalized velocities is proved for the wide variety of 3D domains. The connection between the variational principles and the variable temperature is ensured by inclusion of the first and second principles of thermodynamics in the calculation model. It is essential that only the phenomenological description of the phenomenon is used in the proving process. The austenite-tomartensite transformations of alloys, which are often the key elements in explanations of the mechanical behavior of shape memory materials, are not used here. The fourth section includes the definition of the shape memory materials as solids with two loading surfaces and proves the existence of solutions within the accepted restrictions. The adequacy of the model and the experiments on deformation of shape memory materials is demonstrated. In the conclusion mathematical problems that could be interesting for future research are defined.
-
Bottom stability in closed conduits
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068Views (last year): 1. Citations: 2 (RSCI).In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.
-
Modeling the response of polycrystalline ferroelectrics to high-intensity electric and mechanical fields
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 93-113A mathematical model describing the irreversible processes of polarization and deformation of polycrystalline ferroelectrics in external electric and mechanical fields of high intensity is presented, as a result of which the internal structure changes and the properties of the material change. Irreversible phenomena are modeled in a three-dimensional setting for the case of simultaneous action of an electric field and mechanical stresses. The object of the research is a representative volume in which the residual phenomena in the form of the induced and irreversible parts of the polarization vector and the strain tensor are investigated. The main task of modeling is to construct constitutive relations connecting the polarization vector and strain tensor, on the one hand, and the electric field vector and mechanical stress tensor, on the other hand. A general case is considered when the direction of the electric field may not coincide with any of the main directions of the tensor of mechanical stresses. For reversible components, the constitutive relations are constructed in the form of linear tensor equations, in which the modules of elasticity and dielectric permeability depend on the residual strain, and the piezoelectric modules depend on the residual polarization. The constitutive relations for irreversible parts are constructed in several stages. First, an auxiliary model was constructed for the ideal or unhysteretic case, when all vectors of spontaneous polarization can rotate in the fields of external forces without mutual influence on each other. A numerical method is proposed for calculating the resulting values of the maximum possible polarization and deformation values of an ideal case in the form of surface integrals over the unit sphere with the distribution density obtained from the statistical Boltzmann law. After that the estimates of the energy costs required for breaking down the mechanisms holding the domain walls are made, and the work of external fields in real and ideal cases is calculated. On the basis of this, the energy balance was derived and the constitutive relations for irreversible components in the form of equations in differentials were obtained. A scheme for the numerical solution of these equations has been developed to determine the current values of the irreversible required characteristics in the given electrical and mechanical fields. For cyclic loads, dielectric, deformation and piezoelectric hysteresis curves are plotted.
The developed model can be implanted into a finite element complex for calculating inhomogeneous residual polarization and deformation fields with subsequent determination of the physical modules of inhomogeneously polarized ceramics as a locally anisotropic body.
-
Molecular dynamics study of the mechanical properties of a platinum crystal reinforced with carbon nanotube under uniaxial tension
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1069-1080This article discusses the mechanical properties of carbon nanotube (CNT)-reinforced platinum under uniaxial tensile loading using the molecular dynamics method. A review of current computational and experimental studies on the use of carbon nanotube-reinforced composites from a structural point of view. However, quantitative and qualitative studies of CNTs to improve the properties of composites are still rare. Composite selection is a promising application for platinum alloys in many cases where they may be subjected to mechanical stress, including in biocompatibility sources. Pt-reinforced with CNTs may have additional possibilities for implantation of the implant and at the same time obtain the required mechanical characteristics.
The structure of the composite is composed of a Pt crystal with a face-centered cubic lattice with a constant of 3.92 Å and a carbon nanotube. The Pt matrix has the shape of a cube with dimensions of $43.1541 Å \times 43.1541 Å \times 43.1541 Å$. The hole size in the average platinum dimension is the radius of the carbon nanotube of the «zigzag» type (8,0), which is 2.6 Å. A carbon nanotube is placed in a hole with a radius of 4.2 Å. At such parameters, the maximum energy level was mutually observed. The model under consideration is contained in 320 atomic bombs and 5181 atomic platinum. The volume fraction of deaths in the Pt-C composite is 5.8%. At the first stage of the study, the strain rate was analyzed for stress-strain and energy change during uniaxial action on the Pt-C composite.
Analysis of the strain rate study showed that the consumption yield strength increases with high strain rate, and the elasticity has increased density with decreasing strain rate. This work also increased by 40% for Pt-C, the elasticity of the composite decreased by 42.3%. In general, fracture processes are considered in detail, including plastic deformation on an atomistic scale.
-
Computer analysis of the bone regeneration strength in a model system of osteosynthesis by the Ilizarov fixator with static loads
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 427-440Views (last year): 3.The adequate complexity three-dimensional finite element model of biomechanical system with space, shell and beam-type elements was built. The model includes the Ilizarov fixator and tibial bone’s simulator with the regenerating tissue at the fracture location. The proposed model allows us to specify the orthotropic elastic properties of tibial bone model in cortical and trabecular zones. It is also possible to change the basic geometrical and mechanical characteristics of biomechanical system, change the finite element mash density and define the different external loads, such as pressure on the bone and compression or distraction between the repositioned rings of Ilizarov device.
By using special APDL ANSYS program macros the mode of deformation was calculated in the fracture zone for various static loads on the simulator bone, for compression or distraction between the repositioned rings and for various mechanical properties during different stages of the bone regenerate formation (gelatinous, cartilaginous, trabecular and cortical bone remodeling). The obtained results allow us to estimate the permissible values of the external pressure on the bone and of the displacements of the Ilizarov fixator rings for different stages of the bone regeneration, based on the admittance criterion for the maximum of the stresses in the callus. The presented data can be used in a clinical condition for planning, realization and monitoring of the power modes for transosseous osteosynthesis with the external Ilizarov fixator.
-
Relaxation oscillations and buckling of thin shells
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 807-820The paper reviews possibilities to predict buckling of thin cylindrical shells with non-destructive techniques during operation. It studies shallow shells made of high strength materials. Such structures are known for surface displacements exceeding the thickness of the elements. In the explored shells relaxation oscillations of significant amplitude can be generated even under relatively low internal stresses. The problem of the cylindrical shell oscillation is mechanically and mathematically modeled in a simplified form by conversion into an ordinary differential equation. To create the model, the researches of many authors were used who studied the geometry of the surface formed after buckling (postbuckling behavior). The nonlinear ordinary differential equation for the oscillating shell matches the well-known Duffing equation. It is important that there is a small parameter before the second time derivative in the Duffing equation. The latter circumstance enables making a detailed analysis of the obtained equation and describing the physical phenomena — relaxation oscillations — that are unique to thin high-strength shells.
It is shown that harmonic oscillations of the shell around the equilibrium position and stable relaxation oscillations are defined by the bifurcation point of the solutions to the Duffing equation. This is the first point in the Feigenbaum sequence to convert the stable periodic motions into dynamic chaos. The amplitude and the period of relaxation oscillations are calculated based on the physical properties and the level of internal stresses within the shell. Two cases of loading are reviewed: compression along generating elements and external pressure.
It is highlighted that if external forces vary in time according to the harmonic law, the periodic oscillation of the shell (nonlinear resonance) is a combination of slow and stick-slip movements. Since the amplitude and the frequency of the oscillations are known, this fact enables proposing an experimental facility for prediction of the shell buckling with non-destructive techniques. The following requirement is set as a safety factor: maximum load combinations must not cause displacements exceeding specified limits. Based on the results of the experimental measurements a formula is obtained to estimate safety against buckling (safety factor) of the structure.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"