All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Determination of CT dose by means of noise analysis
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 525-533Views (last year): 23. Citations: 1 (RSCI).The article deals with the process of creating an effective algorithm for determining the amount of emitted quanta from an X-ray tube in computer tomography (CT) studies. An analysis of domestic and foreign literature showed that most of the work in the field of radiometry and radiography takes the tabulated values of X-ray absorption coefficients into account, while individual dose factors are not taken into account at all since many studies are lacking the Dose Report. Instead, an average value is used to simplify the calculation of statistics. In this regard, it was decided to develop a method to detect the amount of ionizing quanta by analyzing the noise of CT data. As the basis of the algorithm, we used Poisson and Gauss distribution mathematical model of owns’ design of logarithmic value. The resulting mathematical model was tested on the CT data of a calibration phantom consisting of three plastic cylinders filled with water, the X-ray absorption coefficient of which is known from the table values. The data were obtained from several CT devices from different manufacturers (Siemens, Toshiba, GE, Phillips). The developed algorithm made it possible to calculate the number of emitted X-ray quanta per unit time. These data, taking into account the noise level and the radiuses of the cylinders, were converted to X-ray absorption values, after which a comparison was made with tabulated values. As a result of this operation, the algorithm used with CT data of various configurations, experimental data were obtained, consistent with the theoretical part and the mathematical model. The results showed good accuracy of the algorithm and mathematical apparatus, which shows reliability of the obtained data. This mathematical model is already used in the noise reduction program of the CT of own design, where it participates as a method of creating a dynamic threshold of noise reduction. At the moment, the algorithm is being processed to work with real data from computer tomography of patients.
-
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Views (last year): 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
Linear and nonlinear optimization models of multiple covering of a bounded plane domain with circles
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1101-1110Problems of multiple covering ($k$-covering) of a bounded set $G$ with equal circles of a given radius are well known. They are thoroughly studied under the assumption that $G$ is a finite set. There are several papers concerned with studying this problem in the case where $G$ is a connected set. In this paper, we study the problem of minimizing the number of circles that form a $k$-covering, $k \geqslant 1$, provided that $G$ is a bounded convex plane domain.
For the above-mentioned problem, we state a 0-1 linear model, a general integer linear model, and a nonlinear model, imposing a constraint on the minimum distance between the centers of covering circles. The latter constraint is due to the fact that in practice one can place at most one device at each point. We establish necessary and sufficient solvability conditions for the linear models and describe one (easily realizable) variant of these conditions in the case where the covered set $G$ is a rectangle.
We propose some methods for finding an approximate number of circles of a given radius that provide the desired $k$-covering of the set $G$, both with and without constraints on distances between the circles’ centers. We treat the calculated values as approximate upper bounds for the number of circles. We also propose a technique that allows one to get approximate lower bounds for the number of circles that is necessary for providing a $k$-covering of the set $G$. In the general linear model, as distinct from the 0-1 linear model, we require no additional constraint. The difference between the upper and lower bounds for the number of circles characterizes the quality (acceptability) of the constructed $k$-covering.
We state a nonlinear mathematical model for the $k$-covering problem with the above-mentioned constraints imposed on distances between the centers of covering circles. For this model, we propose an algorithm which (in certain cases) allows one to find more exact solutions to covering problems than those calculated from linear models.
For implementing the proposed approach, we have developed computer programs and performed numerical experiments. Results of numerical experiments demonstrate the effectiveness of the method.
-
Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.
-
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1063-1079The mathematical model based on the linear integro-differential Boltzmann equation is considered in this article. The model describes the radiation transfer in the scattering medium irradiated by a point source. The inverse problem for the transfer equation is defined. This problem consists of determining the scattering coefficient from the time-angular distribution of the radiation flux density at a given point in space. The Neumann series representation for solving the radiation transfer equation is analyzed in the study of the inverse problem. The zero member of the series describes the unscattered radiation, the first member of the series describes a single-scattered field, the remaining members of the series describe a multiple-scattered field. When calculating the approximate solution of the radiation transfer equation, the single scattering approximation is widespread to calculated an approximate solution of the equation for regions with a small optical thickness and a low level of scattering. An analytical formula is obtained for finding the scattering coefficient by using this approximation for problem with additional restrictions on the initial data. To verify the adequacy of the obtained formula the Monte Carlo weighted method for solving the transfer equation is constructed and software implemented taking into account multiple scattering in the medium and the space-time singularity of the radiation source. As applied to the problems of high-frequency acoustic sensing in the ocean, computational experiments were carried out. The application of the single scattering approximation is justified, at least, at a sensing range of about one hundred meters and the double and triple scattered fields make the main impact on the formula error. For larger regions, the single scattering approximation gives at the best only a qualitative evaluation of the medium structure, sometimes it even does not allow to determine the order of the parameters quantitative characteristics of the interaction of radiation with matter.
-
From homogeneous to inhomogeneous electronic analogue of DNA
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.
-
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 793-805In this paper, compared fundamentally different turbulence models for calculating a strongly swirling flow in an abrupt expanding pipe. This task is not only of great importance in practice, but also in theoretical terms. Because in such a flow a very complex anisotropic turbulence with recirculation zones arises and the study of the ongoing processes allows us to find an answer to many questions about turbulence. The flow under consideration has been well studied experimentally. Therefore, it is a very complex and interesting test problem for turbulence models. In the paper compared the numerical results of the one-parameter vt-92 model, the SSG/LRR-RSMw2012 Reynolds stress method and the new two-fluid model. These models are very different from each other. Because the Boussinesq hypothesis is used in the one-parameter vt-92 model, in the SSG/LRR-RSM-w2012 model, its own equation is written for each stress, and for the new two-fluid model, the basis is a completely different approach to turbulence. A feature of the approach to turbulence for the new two-fluid model is that it allows one to obtain a closed system of equations. Comparison of these models is carried out not only by the correspondence of their results with experimental data, but also by the computational resources expended on the numerical implementation of these models. Therefore, in this work, for all models, the same technique was used to numerically calculate the turbulent swirling flow at the Reynolds number $Re=3\cdot 10^4$ and the swirl parameter $S_w=0.6$. In the paper showed that the new two-fluid model is effective for the study of turbulent flows, because has good accuracy in describing complex anisotropic turbulent flows and is simple enough for numerical implementation.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"