All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.
The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.
Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.
The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.
-
Physical analysis and mathematical modeling of the parameters of explosion region produced in a rarefied ionosphere
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 817-833The paper presents a physical and numerical analysis of the dynamics and radiation of explosion products formed during the Russian-American experiment in the ionosphere using an explosive generator based on hexogen (RDX) and trinitrotoluene (TNT). The main attention is paid to the radiation of the perturbed region and the dynamics of the products of explosion (PE). The detailed chemical composition of the explosion products is analyzed and the initial concentrations of the most important molecules capable of emitting in the infrared range of the spectrum are determined, and their radiative constants are given. The initial temperature of the explosion products and the adiabatic exponent are determined. The nature of the interpenetration of atoms and molecules of a highly rarefied ionosphere into a spherically expanding cloud of products is analyzed. An approximate mathematical model of the dynamics of explosion products under conditions of mixing rarefied ionospheric air with them has been developed and the main thermodynamic characteristics of the system have been calculated. It is shown that for a time of 0,3–3 sec there is a significant increase in the temperature of the scattering mixture as a result of its deceleration. In the problem under consideration the explosion products and the background gas are separated by a contact boundary. To solve this two-region gas dynamic problem a numerical algorithm based on the Lagrangian approach was developed. It was necessary to fulfill special conditions at the contact boundary during its movement in a stationary gas. In this case there are certain difficulties in describing the parameters of the explosion products near the contact boundary which is associated with a large difference in the size of the mass cells of the explosion products and the background due to a density difference of 13 orders of magnitude. To reduce the calculation time of this problem an irregular calculation grid was used in the area of explosion products. Calculations were performed with different adiabatic exponents. The most important result is temperature. It is in good agreement with the results obtained by the method that approximately takes into account interpenetration. The time behavior of the IR emission coefficients of active molecules in a wide range of the spectrum is obtained. This behavior is qualitatively consistent with experiments for the IR glow of flying explosion products.
-
World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.
It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.
Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.
The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.
-
Methodology of aircraft icing calculation in a wide range of climate and speed parameters. Applicability within the NLG-25 airworthiness standards
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 957-978Certifying a transport airplane for the flights under icing conditions in Russia was carried out within the framework of the requirements of Annex С to the AP-25 Aviation Rules. In force since 2023 to replace AP-25 the new Russian certification document “Airworthiness Standards” (NLG-25) proposes the introduction of Appendix O. A feature of Appendix O is the need to carry out calculations in conditions of high liquid water content and with large water drops (500 microns or more). With such parameters of the dispersed flow, such physical processes as the disruption and splashing of a water film when large drops enter it become decisive. The flow of a dispersed medium under such conditions is essentially polydisperse. This paper describes the modifications of the IceVision technique implemented on the basis of the FlowVision software package for the ice accretion calculations within the framework of Appendix O.
The main difference between the IceVision method and the known approaches is the use of the Volume of fluid (VOF) technology to the shape of ice changes tracking. The external flow around the aircraft is calculated simultaneously with the growth of ice and its heating. Ice is explicitly incorporated in the computational domain; the heat transfer equation is solved in it. Unlike the Lagrangian approaches, the Euler computational grid is not completely rebuilt in the IceVision technique: only the cells containing the contact surface are changed.
The IceVision 2.0 version accounts for stripping the film, as well as bouncing and splashing of falling drops at the surfaces of the aircraft and ice. The diameter of secondary droplets is calculated using known empirical correlations. The speed of the water film flow over the surface is determined taking into account the action of aerodynamic forces, gravity, hydrostatic pressure gradient and surface tension force. The result of taking into account surface tension is the effect of contraction of the film, which leads to the formation of water flows in the form of rivulets and ice deposits in the form of comb-like growths. An energy balance relation is fulfilled on the ice surface that takes into account the energy of falling drops, heat exchange between ice and air, the heat of crystallization, evaporation, sublimation and condensation. The paper presents the results of solving benchmark and model problems, demonstrating the effectiveness of the IceVision technique and the reliability of the obtained results.
-
Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253Views (last year): 1. Citations: 3 (RSCI).To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).
-
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Views (last year): 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Protection of biological resources in the coastal area: the mathematical model
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125Views (last year): 1. Citations: 1 (RSCI).Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.
In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"