All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
On the modeling of water obstacles overcoming by Rangifer tarandus L
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.
-
Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.
-
Quantitative analysis of “structure – anticancer activity” and rational molecular design of bi-functional VEGFR-2/HDAC-inhibitors
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 911-930Inhibitors of histone deacetylases (HDACi) have considered as a promising class of drugs for the treatment of cancers because of their effects on cell growth, differentiation, and apoptosis. Angiogenesis play an important role in the growth of most solid tumors and the progression of metastasis. The vascular endothelial growth factor (VEGF) is a key angiogenic agent, which is secreted by malignant tumors, which induces the proliferation and the migration of vascular endothelial cells. Currently, the most promising strategy in the fight against cancer is the creation of hybrid drugs that simultaneously act on several physiological targets. In this work, a series of hybrids bearing N-phenylquinazolin-4-amine and hydroxamic acid moieties were studied as dual VEGFR-2/HDAC inhibitors using simplex representation of the molecular structure and Support Vector Machine (SVM). The total sample of 42 compounds was divided into training and test sets. Five-fold cross-validation (5-fold) was used for internal validation. Satisfactory quantitative structure—activity relationship (QSAR) models were constructed (R2test = 0.64–0.87) for inhibitors of HDAC, VEGFR-2 and human breast cancer cell line MCF-7. The interpretation of the obtained QSAR models was carried out. The coordinated effect of different molecular fragments on the increase of antitumor activity of the studied compounds was estimated. Among the substituents of the N-phenyl fragment, the positive contribution of para bromine for all three types of activity can be distinguished. The results of the interpretation were used for molecular design of potential dual VEGFR-2/HDAC inhibitors. For comparative QSAR research we used physicochemical descriptors calculated by the program HYBOT, the method of Random Forest (RF), and on-line version of the expert system OCHEM (https://ochem.eu). In the modeling of OCHEM PyDescriptor descriptors and extreme gradient boosting was chosen. In addition, the models obtained with the help of the expert system OCHEM were used for virtual screening of 300 compounds to select promising VEGFR-2/HDAC inhibitors for further synthesis and testing.
-
Simulation of pollution migration processes at municipal solid waste landfills
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 369-385The article reports the findings of an investigation into pollution migration processes at the municipal solid waste (MSW) landfill located in the water protection zone of Lake Seliger (Tver Region). The distribution of pollutants is investigated and migration parameters are determined in field and laboratory conditions at the landfill site. A mathematical model describing physical and chemical processes of substance migration in soil strata is constructed. Pollutant migration is found to be due to a variety of factors. The major ones, having a significant impact on the migration of MSW ingredients and taken into account mathematically, include convective transport, diffusion and sorption processes. A modified mathematical model differs from its conventional counterparts by considering a number of parameters reflecting the decrease in the concentration of ammonium and nitrate nitrogen ions in ground water (transpiration by plant roots, dilution with infiltration waters, etc.). An analytical solution to assess the pollutant spread from the landfill is presented. The mathematical model provides a set of simulation models helping to obtain a computational solution of specific problems, vertical and horizontal migration of substances in the underground flow. Numerical experiments, analytical solutions, as well as field and laboratory data was studied the dynamics of pollutant distribution in the object under study up to the lake. A long-term forecast for the spread of landfill pollution is made. Simulation experiments showed that some zones of clean groundwater interact with those of contaminated groundwater during the pollution migration from the landfill, each characterized by a different pollutant content. The data of a computational experiments and analytical calculations are consistent with the findings of field and laboratory investigations of the object and give grounds to recommend the proposed models for predicting pollution migration from a landfill. The analysis of the pollution migration simulation allows to substantiate the numerical estimates of the increase in $NH_4^+$ and $NO_3^-$ ion concentration with the landfill operation time. It is found that, after 100 years following the landfill opening, toxic filtrate components will fill the entire pore space from the landfill to the lake resulting in a significant deterioration of the ecosystem of Lake Seliger.
-
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Exciton interaction of the chromophores — a tool to fine-tune the mechanism of non-photochemical quenching of phycobilisome in cyanobacteria
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 125-144Views (last year): 2. Citations: 2 (RSCI).It was carried out a theoretical analysis of the energy migration rate in the process of non-photochemical quenching of fluorescence pigment-protein complex that performed by means of orange carotenoid-protein in the phycobilisomes of cyanobacteria. It is shown that the observed rate of energy transfer can not be interpreted in the framework of inductive-resonant mechanism of energy migration (Förster’s theory). On the contrary, according to the calculations the implementation of the exciton mechanism is fully consistent with the experimentally observed high quenching rate. An essential feature of the implementation of the exciton mechanism is to comply with a number of structural and functional conditions that require fine-tuning of the molecular system in the interaction of donor and acceptor molecules both each other and with the local molecular environment.
-
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Views (last year): 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Application of the kinetic type model for study of a spatial spread of COVID-19
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.
-
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"