Результаты поиска по 'model stability':
Найдено статей: 91
  1. Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  2. Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.

    Views (last year): 1. Citations: 1 (RSCI).
  3. Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Views (last year): 30.
  4. Madera A.G.
    Modeling thermal feedback effect on thermal processes in electronic systems
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 483-494

    The article is devoted to the effect of thermal feedback, which occurs during the operation of integrated circuits and electronic systems with their use. Thermal feedback is due to the fact that the power consumed by the functioning of the microchip heats it and, due to the significant dependence of its electrical parameters on temperature, interactive interaction arises between its electrical and thermal processes. The effect of thermal feedback leads to a change in both electrical parameters and temperature levels in microcircuits. Positive thermal feedback is an undesirable phenomenon, because it causes the output of the electrical parameters of the microcircuits beyond the permissible values, the reduction in reliability and, in some cases, burn out. Negative thermal feedback is manifested in stabilizing the electrical and thermal regimes at lower temperature levels. Therefore, when designing microcircuits and electronic systems with their application, it is necessary to achieve the implementation of negative feedback. In this paper, we propose a method for modeling of thermal modes in electronic systems, taking into account the effect of thermal feedback. The method is based on introducing into the thermal model of the electronic system new model circuit elements that are nonlinearly dependent on temperature, the number of which is equal to the number of microcircuits in the electronic system. This approach makes it possible to apply matrix-topological equations of thermal processes to the thermal model with new circuit elements introduced into it and incorporate them into existing thermal design software packages. An example of modeling a thermal process in a real electronic system is presented, taking into account the effect of thermal feedback on the example of a microcircuit installed on a printed circuit board. It is shown that in order to adequately model the electrical and thermal processes of microcircuits and electronic systems, it is necessary to take into account the effects of thermal feedback in order to avoid design errors and create competitive electronic systems.

    Views (last year): 22. Citations: 3 (RSCI).
  5. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Views (last year): 40. Citations: 2 (RSCI).
  6. Kliuev P.N., Ramazanov R.R.
    The mechanism of dissociation of cytosine pairs mediated by silver ions
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 685-693

    The development of structured molecular systems based on a nucleic acid framework takes into account the ability of single-stranded DNA to form a stable double-stranded structure due to stacking interactions and hydrogen bonds of complementary pairs of nucleotides. To increase the stability of the DNA double helix and to expand the temperature range in the hybridization protocols, it was proposed to use more stable metal-mediated complexes of nucleotide pairs as an alternative to Watson-Crick hydrogen bonds. One of the most frequently considered options is the use of silver ions to stabilize a pair of cytosines from opposite DNA strands. Silver ions specifically bind to N3 cytosines along the helix axis to form, as is believed, a strong N3–Ag+–N3 bond, relative to which, two rotational isomers, the cis- and trans-configurations of C–Ag+–C can be formed. In present work, a theoretical study and a comparative analysis of the free energy profile of the dissociation of two С–Ag+–C isomers were carried out using the combined method of molecular mechanics and quantum chemistry (QM/MM). As a result, it was shown that the cis-configuration is more favorable in energy than the trans- for a single pair of cytosines, and the geometry of the global minimum at free energy profile for both isomers differs from the equilibrium geometries obtained previously by quantum chemistry methods. Apparently, the silver ion stabilization model of the DNA duplex should take into account not only the direct binding of silver ions to cytosines, but also the presence of related factors, such as stacking interaction in extended DNA, interplanar hydrogen bonds, and metallophilic interaction of neighboring silver ions.

    Views (last year): 2.
  7. Leon C., Tokarev A.A., Volpert V.A.
    Modelling of cytokine storm in respiratory viral infections
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645

    In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.

    At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.

    In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.

  8. Gorelova A.Y., Stiazhin V.N., Kristal M.G.
    Computer Simulation of the Acceleration of the Gyroscopic Device for Boring Head’s Position Stabilization
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 569-575

    Given paper covers the structure of the introduced device stabilizing the boring tool. The computer model of the hydrojet gyroscopic device is described; problem definition and the results of simulation are given.

    Views (last year): 1. Citations: 1 (RSCI).
  9. Zlenko D.V., Stadnichuk I.N., Krasilnikov P.M.
    Molecular model of OCP-phycobilisome complex formation
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 761-774

    A molecular model of phicobilisome complex with a quenching protein OCP which regulates the energy transfer from phicobilisome to photosystem in photosynthetic apparatus of cyanobacteria has been developed. In the model obtained a well known spatial structure of interacting proteins remains intact and also the energy transfer from phycobilisome to OCP with reasonable rates is possible. Free energy of complex formation was calculated using MM–PBSA approach. By the order of magnitude this energy is about tens of kJ/mole. This value correlates well with experimental observed low stability of this complex. The specific surface energy of interaction between hydrophylic phicobilisome and OCP is twice larger than specific surface energy of their interaction with water. This reflects a high molecular complementary of interacting protein surfaces and is a strong pro argument for proposed model.

  10. Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"