All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
-
Forecasting the labor force dynamics in a multisectoral labor market
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 235-250The article considers the problem of forecasting the number of employed and unemployed persons in a multisectoral labor market using a balance mathematical model of labor force intersectoral dynamics.
The balance mathematical model makes it possible to calculate the values of intersectoral dynamics indicators using only statistical data on sectoral employment and unemployment provided by the Federal State Statistics Service. Intersectoral dynamics indicators of labor force calculated for several years in a row are used to build trends for each of these indicators. The found trends are used to calculation of forecasted intersectoral dynamics indicators of labor force. The sectoral employment and unemployment of researched multisectoral labor market is forecasted based on values these forecasted indicators.
The proposed approach was applied to forecast the employed persons in the economic sectors of the Russian Federation in 2011–2016. The following types of trends were used to describe changes of intersectoral dynamics indicators values: linear, non-linear, constant. The procedure for selecting trends is clearly demonstrated by the example of indicators that determine the labor force movements from the “Transport and communications” sector to the “Healthcare and social services” sector, as well as from the “Public administration and military security, social security” sector to the “Education” sector.
Several approaches to forecasting was compared: a) naive forecast, within which the labor market indicators was forecasted only using a constant trend; b) forecasting based on a balance model using only a constant trend for all intersectoral dynamics indicators of labor force; c) forecasting directly by the number employed persons in economic sectors using the types of trends considered in the article; d) forecasting based on a balance model with the trends choice for each intersectoral dynamics indicators of labor force.
The article shows that the use of a balance model provides a better forecast quality compared to forecasting directly by the number of employed persons. The use of trends in intersectoral dynamics indicators improves the quality of the forecast. The article also provides analysis examples of the multisectoral labor market in the Russian Federation. Using the balance model, the following information was obtained: the labor force flows distribution outgoing from concrete sectors by sectors of the economy; the sectoral structure of the labor force flows ingoing in concrete sectors. This information is not directly contained in the data provided by the Federal State Statistics Service.
-
Personalization of mathematical models in cardiology: obstacles and perspectives
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model. -
Forecasting demographic and macroeconomic indicators in a distributed global model
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.
-
Features of social interactions: the basic model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.
-
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
-
Confirmatory factor model of hypertension
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 885-894Views (last year): 2. Citations: 7 (RSCI).A new method of constructing orthogonal factor model based on the method of correlation pleiades and confirmatory factor analysis. A new algorithm for confirmatory factor analysis. Based on an original method built factor model of hypertension the first stage. The analysis of correlations and indices of arterial hypertension.
-
Investigation of C-Cadherin mechanical properties by Molecular Dynamics
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735Views (last year): 5.The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.
-
Schools on mathematical biology 1973–1992
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422Views (last year): 2.This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.
-
Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.
When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"