All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Nonlinear supratransmission in a Pt3Al crystal at intense external influence
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117Views (last year): 18.The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.
-
Investigation of complex formation of flavodoxin and photosystem 1 by means of direct multiparticle computer simulation
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 85-91Views (last year): 4. Citations: 2 (RSCI).Kinetics of complex formation between components of the photosynthetic electron transport chain — flavodoxin and membrane complex photosystem I has been studied using computer model based on methods of multiparticle simulation and Brownian dynamics. We simulated Brownian motion of several hundreds of flavodoxin molecules, taking into account electrostatic interactions and complex shape of the molecules. Our model could describe experimental nonmonotonic dependence of the association rate constant for flavodoxin and photosystem I. This lets us conclude that electrostatic interactions are sufficient to form such kind of nonmonotonic dependence.
-
Influence of the simplest type of multiparticle interactions on the example of a lattice model of an adsorption layer
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 445-458Self-organization of molecules on a solid surface is one of the promising directions for materials generation with unique magnetic, electrical, and optical properties. They can be widely used in fields such as electronics, optoelectronics, catalysis, and biology. However, the structure and physicochemical properties of adsorbed molecules are influenced by many parameters that must be taken into account when studying the self-organization of molecules. Therefore, the experimental study of such materials is expensive, and quite often it is difficult for various reasons. In such situations, it is advisable to use the mathematical modeling. One of the parameters in the considered adsorption systems is the multiparticle interaction, which is often not taken into account in simulations due to the complexity of the calculations. In this paper, we evaluated the influence of multiparticle interactions on the total energy of the system using the transfer-matrix method and the Materials Studio software package. The model of monocentric adsorption with nearest interactions on a triangular lattice was taken as the basis. Phase diagrams in the ground state were constructed and a number of thermodynamic characteristics (coverage $\theta$, entropy $S$, susceptibility $\xi$) were calculated at nonzero temperatures. The formation of all four ordered structures (lattice gas with $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ with $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ with $\theta = \frac{2}{3}$ and densest phase with $\theta = 1$) in a system with only pairwise interactions, and the absence of the phase $(\sqrt{3}\times \sqrt{3}) R30^\circ$ when only three-body interactions are taken into account, were found. Using the example of an atomistic model of the trimesic acid adsorption layer by quantum mechanical methods we determined that in such a system the contribution of multiparticle interactions is 11.44% of the pair interactions energy. There are only quantitative differences at such values. The transition region from the $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ to the densest phase shifts to the right by 38.25% at $\frac{\varepsilon}{RT} = 4$ and to the left by 23.46% at $\frac{\varepsilon}{RT} = −2$.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"